• 제목/요약/키워드: Beam angle

검색결과 1,357건 처리시간 0.027초

The effect of pretilt angle on viewing angle in In-Plane switching mode LCD

  • Kang, Dong-Jin;Gwag, Jin-Seog;Park, Kyoung-Ho;Yoon, Tae-Hoon;Kim, Jae-Chang;Lee, Gi-Dong;Kim, Hee;Cho, Seong-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.559-562
    • /
    • 2003
  • The effect of pretilt angle on viewing characteristics of an IPS cell is discussed. We calculated optical viewing angle in the IPS cell as function of pretilt angle from $0.5^{\circ}$ to $4^{\circ}$, so that we could confirm that low pretilt angle was profitable for wider viewing property. In order to verify the calculation, we made an IPS cell with very low pretilt angle by the alignment method using ion beam exposure. In the experiment, we confirmed that wider viewing characteristics can be achieved if lower pretilt angle was applied in IPS mode. And Ion beam alignment method was useful for low pretilt creation.

  • PDF

전자빔 패터닝과 double-angle 그림자 증착법을 이용한 sub-micron 크기의 $Al-AlO_x-Al$ 터널접합 제작공정개발 (Fabrication of Sub-Micron Size $Al-AlO_x-Al$ Tunnel Junction using Electron-Beam Lithography and Double-Angle Shadow Evaporation Technique)

  • ;최재원;류시정;박정환;류상완;김정구;송운;정연욱
    • Progress in Superconductivity
    • /
    • 제10권2호
    • /
    • pp.99-102
    • /
    • 2009
  • We report our development of the fabrication process of sub-micron scale $Al-AlO_x-Al$ tunnel junction by using electron-beam lithography and double-angle shadow evaporation technique. We used double-layer resist to construct a suspended bridge structure, and double-angle electron-beam evaporation to form a sub-micron scale overlapped junction. We adopted an e-beam insensitive resist as a bottom sacrificing layer. Tunnel barrier was formed by oxidation of the bottom aluminum layer between the bottom and top electrode deposition, which was done in a separate load-lock chamber. The junction resistance is designed and controlled to be 50 $\Omega$ to match the impedance of the transmission line. The junctions will be used in the broadband shot noise thermometry experiment, which will serve as a link between the electrical unit and the thermodynamic unit.

  • PDF

분배 브래그 반사기가 집적된 실리콘 기반 격자 구조를 이용한 광학 빔 방사 효율 및 조향 선폭 성능 향상 (A High Radiation Efficiency and Narrow Beam Width of Optical Beam Steering Using a Silicon-based Grating Structure Integrated with Distributed Bragg Reflectors)

  • 홍유승;조준형;성혁기
    • 한국정보통신학회논문지
    • /
    • 제23권3호
    • /
    • pp.311-317
    • /
    • 2019
  • 먼저 광학 신호를 이용한 다양한 응용 분야에서의 핵심 요소인 광학 빔 조향 성능 향상을 위하여 실리콘 기반 격자 구조의 특성을 해석하였다. 이를 기반으로 높은 방사 효율과 좁은 빔 폭을 얻기 위해서 기존의 격자 구조 방사기에 분배 브래그 반사기(Distributed Bragg Reflector, DBR)를 집적한 구조를 제안한다. 분배 브래그 반사기의 위치에 따른 방사 효율과 방사 각도의 전치 반폭을 분석하고 이를 토대로 최적화 구조를 제안한다. 제안한 격자 구조는 상보형 금속산화 반도체(complementary metal-oxide semiconductor, CMOS) 공정과 호환 가능하며, 최대 방사 효율 87.1% 및 최소 방사 각도의 반치 전폭 $4.68^{\circ}$를 가진다.

Load Transfer Mechanism of a Hybrid Beam-Column Connection System with Structural Tees

  • Kim, Sang-Sik;Choi, Kwang-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.199-205
    • /
    • 2006
  • The composite frame system with reinforced concrete column and steel beam can be improved in its structural efficiency by complementing the shortcomings of the two systems. The system, however, has many inherent problems in practical design and construction process due to the dissimilarities of the materials. Considering these circumstance, this research aims for the development of a composite structural system which connects the steel beams to the R/C columns with higher structural safety and economy. Basically, the proposed connection system is composed of four split tees, structural angles reinforced by a stiffener, high strength steel rods, connecting plates and shear plates. Structural tests have been carried out to investigate the moment transfer mechanism 1Tom the beam flange to steel rods or connecting plates through the structural angle reinforced by a stiffener. The four prototype specimens have been tested until the flange of the beam reached a plastic state. The test results indicated that no distinct material dissimilarities between concrete and steel have been detected for the proposed hybrid beam-column connection system and that the stress transfer through the structural angle between the beam flange and steel rods or connecting plates was very encouraging.

항공기용 연료호스의 빔 시일 피팅의 형상변화에 따른 접촉특성에 관한 연구 (A Study on Contact Characteristics by the Geometry Variation of Beam Seal Fitting of an Aircraft Fuel Hose)

  • 전준영;김병탁
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.101-108
    • /
    • 2013
  • An aircraft fuel hose is a kind of high pressure hose, and generally consists of a nipple, a socket, an inner tube, and a reinforcement layer to increase the tensile strength. Especially the nipple supports the other components in manufacturing stages such as the swaging or crimping processes however, the nipple also serves to prevent leakage in cases of hose engagement with a hydraulic system. To ensure the seal of the hose assembly, a beam seal fitting with metal-to-metal contact is usually adopted at the end of a nipple. Therefore, the geometry of the beam is an important parameter to be determined to make sure there is sufficient contact force. This study aims to investigate the effects of beam seal geometry on the contact force by changing the inclined angle and the thickness of the beam. The results reveal that the proper thickness and inclined angle of the beam seal are 0.45 mm and $8.5^{\circ}$, respectively.

Effects of Electron Beam Irradiation on Tribological and Physico-chemical Properties of Polyoxymethylene (POM-C) copolymer

  • ;;;;김민석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.153-153
    • /
    • 2016
  • Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 KGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using Pin on disk tribometer, Raman spectroscopy, SEM-EDS, Optical microscopy, 3D Nano surface profiler system and Contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in a decrease of the friction coefficient and wear loss of POM-C block due to well suited cross-linking, carbonization, free radicals formation and energetic electrons-atoms collisions (physical interaction). It also shows lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation doses at 200, 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The electron beam irradiation transferred the wear of unirradiated POM-C block from the abrasive wear, adhesive wear and scraping to mild scraping for the 1 MeV, 100 kGy irradiated POM-C block which is concluded from SEM-EDS and Optical microscopic observations. The degree of improvement for tribological attribute relies on the electron beam irradiation condition (energy and dose rate).

  • PDF

AESA 레이더 광각 빔조향 특성을 고려한 복사소자 설계 기법 (Radiator Design Method considering Wide-Angle Beam Steering Characteristics of AESA Radar)

  • 김영완;채희덕;안세환;주지한
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.87-92
    • /
    • 2022
  • 본 논문에서는 탐색기용 AESA 레이더에 적용할 수 있는 배열소자 설계에 관한 연구를 수행하였다. AESA 레이더에 적용하기 위한 안테나는 전자 빔조향 특성을 확보하기 위해 배열 안테나에 적용할 최적의 복사소자를 선정하고, 설계 시 빔조향 특성을 고려하여야 한다. 특히 광각 빔조향 특성을 충족하기 위해 광각 임피던스 매칭(WAIM:Wide Angle Impedance Matching) 기법을 활용하여 광각 조향 시 발생할 수 있는 음영 지역(Scan Blindness region)을 최소화하여야 한다. 이처럼 시스템 운용의 안정성 확보가 AESA 레이더의 중요한 설계 고려 사항이 되고 있다. 본 논문에서는 AESA 레이더 안테나 장치에 적용되는 복사소자 특성을 개선하기 위해 복사소자 끝단에 WAIM을 적용하고, 시스템의 안정적 운용 척도인 능동 반사 계수 성능 변화를 검토하였다. 최종 성능 결과는 시뮬레이션 데이터를 수학적으로 합성하여 제시한 방안의 유효성을 검증하였다.

Determination of Incident Angle and Position of Optimal Mode Ultrasonic Beam for Flaw Detection in Anisotropic and Inhomogeneous Weldments by Ray Tracing

  • Zhao, Xinyu;Song, Sung-Jin;Kim, Hak-Joon;Gang, Tie;Kang, Suk-Chull;Choi, Yong-Hwan;Kim, Kyung-Cho;Kang, Sung-Sik
    • 비파괴검사학회지
    • /
    • 제27권3호
    • /
    • pp.231-238
    • /
    • 2007
  • Ultrasonic inspection of austenitic steel weldments is a truly difficult task due to complicated wave propagation phenomena such as beam skewing, splitting and distortion. In order to understand these phenomena and design proper inspection procedures, simulation is increasingly paid more attention to. This article addresses a ray tracing based approach to determine incident angle and position of optimal wave mode ultrasonic beam for flaw detection in anisotropic and inhomogeneous austenitic steel weldments. Specially, the optimal mode of ultrasonic wave wave is selected by ray tracing simulation, and an optimization approach based on ray tracing and bi-section search is proposed in order to find the ray path connecting two given points in weldments. With help of this approach, the optimal incident angle and position of ultrasonic beam can be determined for a given flaw position.

Liquid Crystal Alignment on the SiC Thin Film by the Ion Beam Exposure Method

  • Park, Chang-Joon;Hwang, Jeoung-Yeon;Kang, Hyung-Ku;Kim, Young-Hwan;Seo, Dae-Shik;Ahn, Han-Jin;Kim, Kyung-Chan;Kim, Jong-Bok;Baik, Hong-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권1호
    • /
    • pp.22-24
    • /
    • 2005
  • We studied the nematic liquid crystal (NLC) aligning capabilities using the new alignment material of the SiC (Silicon Carbide) thin film. The SiC thin film exhibits good chemical and thermal stability. The good thermal and chemical stability makes SiC an attractive candidate for electronic applications. A vertical alignment of nematic liquid crystal by ion beam exposure on the SiC thin film surface was achieved. The about $87{\circ}$ of stable pretilt angle was achieved at the range from $30{\circ}$ to $45{\circ}$ of incident angle. The good LC alignment is maintained by the ion beam alignment method on the SiC thin film surface at high annealing temperatures up to $300{\circ}C$.

위성체에 장착된 얇은 벽 복합재 보의 열 진동 특성 (Thermal Vibration Characteristics of a Thin Walled Composite Beam attached on Spacecraft)

  • 김규선;송오섭
    • Composites Research
    • /
    • 제23권6호
    • /
    • pp.47-54
    • /
    • 2010
  • 위성체에 장착된 얇은 벽 복합재보에 대한 열 진동 특성에 대한 연구를 수행하였다. 복합재 보는 얇은 벽과 원주 방향으로 강성이 일정하다고 가정을 하였으며, 기존에 우주사용 적합성이 증명된 T300/Epoxy, YS90A/Epoxy와 같은 소재를 채택하여 모델링을 하였다. 자세제어 오차각 및 복합재 보의 끝단 변위에 대한 정적상태 및 정점-정점 오차를 열 진동 특성의 성능지수로 하여 평가하였으며, 평가결과 YS90A 복합재가 자세제어 오차각의 정점-정점 각도에서 2배 정도의 우수한 성능을 보여 주었다.