• Title/Summary/Keyword: Beam Quality

Search Result 1,060, Processing Time 0.025 seconds

Athermalization and Narcissus Analysis of Mid-IR Dual-FOV IR Optics (이중 시야 중적외선 광학계 비열화·나르시서스 분석)

  • Jeong, Do Hwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.110-118
    • /
    • 2018
  • We have designed a mid-infrared optical system for an airborne electro-optical targeting system. The mid-IR optical system is a dual-field-of-view (FOV) optics for an airborne electro-optical targeting system. The optics consists of a beam-reducer, a zoom lens group, a relay lens group, a cold stop conjugation optics, and an IR detector. The IR detector is an f/5.3 cooled detector with a resolution of $1280{\times}1024$ square pixels, with a pixel size of $15{\times}15{\mu}m$. The optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ and $5.40^{\circ}{\times}4.23^{\circ}$) by the insertion of two lenses into the zoom lens group. The IR optical system was designed in such a way that the working f-number (f/5.3) of the cold stop internally provided by the IR detector is maintained over the entire FOV when changing the zoom. We performed two analyses to investigate thermal effects on the image quality: athermalization analysis and Narcissus analysis. Athermalization analysis investigated the image focus shift and residual high-order wavefront aberrations as the working temperature changes from $-55^{\circ}C$ to $50^{\circ}C$. We first identified the best compensator for the thermal focus drift, using the Zernike polynomial decomposition method. With the selected compensator, the optics was shown to maintain the on-axis MTF at the Nyquist frequency of the detector over 10%, throughout the temperature range. Narcissus analysis investigated the existence of the thermal ghost images of the cold detector formed by the optics itself, which is quantified by the Narcissus Induced Temperature Difference (NITD). The reported design was shown to have an NITD of less than $1.5^{\circ}C$.

A Study of Various Filter Setups with FBP Reconstruction for Digital Breast Tomosynthesis (디지털 유방단층영상합성법의 FBP 알고리즘 적용을 위한 다양한 필터 조합에 대한 연구)

  • Lee, Haeng-Hwa;Kim, Ye-Seul;Lee, Youngjin;Choi, Sunghoon;Lee, Seungwan;Park, Hye-Suk;Kim, Hee-Joung;Choi, Jae-Gu;Choi, Young-Wook
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.271-280
    • /
    • 2014
  • Recently, digital breast tomosynthesis (DBT) has been investigated to overcome the limitation of conventional mammography for overlapping anatomical structures and high patient dose with cone-beam computed tomography (CBCT). However incomplete sampling due to limited angle leads to interference on the neighboring slices. Many studies have investigated to reduce artifacts such as interference. Moreover, appropriate filters for tomosynthesis have been researched to solve artifacts resulted from incomplete sampling. The primary purpose of this study is finding appropriate filter scheme with FBP reconstruction for DBT system to reduce artifacts. In this study, we investigated characteristics of various filter schemes with simulation and prototype digital breast tomosynthesis under same acquisition parameters and conditions. We evaluated artifacts and noise with profiles and COV (coefficinet of variation) to study characteristic of filter. As a result, the noise with parameter 0.25 of Spectral filter reduced by 10% in comparison to that with only Ramp-lak filter. Because unbalance of information reduced with decreasing B of Slice thickness filter, artifacts caused by incomplete sampling reduced. In conclusion, we confirmed basic characteristics of filter operations and improvement of image quality by appropriate filter scheme. The results of this study can be utilized as base in research and development of DBT system by providing information that is about noise and artifacts depend on various filter schemes.

Study on the calibration phantom and metal artifacts using virtual monochromatic images from dual energy CT (듀얼 에너지 CT의 가상 단색 영상을 이용한 영상 교정 팬텀과 금속 인공음영에 관한 연구)

  • Lee, Jun seong;Lee, Seung hoon;Park, Ju gyung;Lee, Sun young;Kim, Jin ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Purpose: To evaluate the image quality improvement and dosimetric effects on virtual monochromatic images of a Dual Source-Dual Energy CT(DS-DECT) for radiotherapy planning. Materials and Methods: Dual energy(80/Sn 140 kVp) and single energy(120 kVp) scans were obtained with dual source CT scanner. Virtual monochromatic images were reconstructed at 40-140 keV for the catphan phantom study. The solid water-equivalent phantom for dosimetry performs an analytical calculation, which is implemented in TPS, of a 10 MV, $10{\times}10cm^2$ photon beam incident into the solid phantom with the existence of stainless steel. The dose profiles along the central axis at depths were discussed. The dosimetric consequences in computed treatment plans were evaluated based on polychromatic images at 120 kVp. Results: The magnitude of differences was large at lower monochromatic energy levels. The measurements at over 70 keV shows stable HU for polystyrene, acrylic. For CT to ED conversion curve, the shape of the curve at 120 kVp was close to that at 80 keV. 105 keV virtual monochromatic images were more successful than other energies at reducing streak artifacts, which some residual artifacts remained in the corrected image. The dose-calculation variations in radiotherapy treatment planning do not exceed ${\pm}0.7%$. Conclusion: Radiation doses with dual energy CT imaging can be lower than those with single energy CT imaging. The virtual monochromatic images were useful for the revision of CT number, which can be improved for target coverage and electron densities distribution.

  • PDF

Optimization of Protocol for Injection of Iodinated Contrast Medium in Pediatric Thoracic CT Examination (소아 흉부 CT검사에서 조영제 주입에 관한 프로토콜의 최적화)

  • Kim, Yung-Kyoon;Kim, Yon-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.879-887
    • /
    • 2019
  • The purpose of this study is to establish a physiological injection protocol according to body weight, in order to minimize amount of contrast medium and optimize contrast enhancement in pediatric patients performing thoracic CT examinations. The 80 pediatric patients under the age of 10 were studied. Intravenous contrast material containing 300 mgI/ml was used. The group A injected with a capacity of 1.5 times its weight, and groups B, C and D added 5 to 15 ml of normal saline with a 10% decrease in each. The physiologic model which can be calculated by weight about amount of injection of contrast medium and normal saline, flow rate and delay time were applied. To assess image quality, measured average HU value and SNR of superior vena cava, pulmonary artery, ascending and descending aorta, right and left atrium, right and left ventricle. CT numbers of subclavian vein and superior vena cava were compared to identify the effects of reducing artifacts due to normal saline. Comparing SNR according to the contrast medium injection protocol, significant differences were found in superior vena cava and pulmonary artery, descending aorta, right and left ventricle, and CT numbers showed significant differences in all organs. In particular, B group with a 10% decrease in contrast medium and an additional injection of saline showed a low degree of contrast enhancement in groups with a decrease of more than 20%. In addition, the group injected with normal saline greatly reduced contrast enhancement of subclavian vein and superior vena cava, and the beam hardening artifact by contrast medium was significantly attenuated. In conclusion, the application of physiological protocol for injection of contrast medium in pediatric thoracic CT examinations was able to reduce artifacts by contrast medium, prevent unnecessary use of contrast medium and improve the effect of contrast enhancement.

DEM Generation over Coastal Area using ALOS PALSAR Data - Focus on Coherence and Height Ambiguity - (ALOS PALSAR 자료를 이용한 연안지역의 DEM 생성 - 긴밀도와 고도 민감도 분석을 중심으로 -)

  • Choi, Jung-Hyun;Lee, Chang-Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.559-566
    • /
    • 2007
  • The generation of precise digital elevation model (DEM) is very important in coastal area where time series are especially required. Although a LIDAR system is useful in coastal regions, it is not yet popular in Korea mainly because of its high surveying cost and national security reasons. Recently, precise DEM has been made using radar interferometry and waterline methods. One of these methods, spaceborne imaging radar interferometry has been widely used to measure the topography and deformation of the Earth. We acquired ALOS PALSAR FBD mode (Fine Beam Dual) data for evaluating the quality of interferograms and their coherency. We attempted to construct DEM using ALOS PALSAR pairs - One pair is 2007/05/22 and 2007/08/22, another pair is 2007/08/22 and 2007/10/22 with respective perpendicular baseline of 820 m, 312m and respective height sensitivity of 75 m and 185m at southern of Ganghwa tidal flat, Siwha- and Hwaong-lake over west coastal of Korea peninsula. Ganghwa tidal flat has low coherence between 0.3 and 0.5 of 2007/05/22 and 2007/08/22 pair. However, Siwha-lake and Hwaong-lake areas have a higher coherence value (From 0.7 and 0.9) than Ganghwa tidal area. The reason of difference coherence value is tidal condition between tidal flat area (Ganghwa) and reclaimed zone (Siwha-lake and Hwaong-lake). Therefore, DEM was constructed by ALOS PALSAR pair over Siwha-lake and Hwaong-lake. If the temporal baseline is enough short to maintain the coherent phases and height sensitivity is enough small, we will be able to successfully construct a precise DEM over coastal area. From now on, more ALOS PALSAR data will be needed to construct precise DEM of West Coast of Korea peninsular.

Comparison of Thyroid Doses for Shielding Material Changes in Neck Computed Tomography (Neck CT에서 차폐체 재료 변화에 따른 Thyroid 선량 비교 연구)

  • Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2019
  • With regard to current Neck CT, Bismuth shielding boards are often being used to reduce exposure to superficial organs such as the thyroid. However, beam hardening often occurs near superficial organs with Bismuth shielding boards and variations in CT Number, Noise, and Uniformity values occur severely. This study looked into the usefulness of shielding boards made from aluminum and silicone that can be easily obtained and have good machinability by comparing them to the existing Bismuth shielding board. An Aluminum 7.3mm and a Silicone 21.5mm were made with shielding ratios similar to that of the Bismuth(0.06 mmPb). TLD (TLD-100) was placed on the thyroid area of the Phantom (RS-108T) and 5 doses were measured for each. To compare image quality, CT Number and Noise variations in axial images of the thyroid area in Neck CT images were compared. Also, variations in CT Number, Noise, and Uniformity were measured in the AAPM phantom images and compared. In the results, when thyroid doses for each shielding board were compared, the Bismuth shielding board showed a 14% reduction, the Silicone 21.5mm showed a 15% reduction, and the Aluminum 7.3mm showed a 13% reduction compared to the Non-Shield. Statistically, there were no significant differences in comparison with the Bismuth shielding board. In CT Number variations of thyroid area images, variations were largest for the Bismuth shielding board. With Uniformity evaluations of the AAPM phantom, the Bismuth shielding board was found unsuitable and the Aluminum 7.3mm and Silicone 21.5mm satisfied the acceptance criteria. Research results show that the Aluminum 7.3mm and Silicone 21.5mm have a similar shielding ratio to the high-priced Bismuth shielding board that is currently being used clinically and in comparison tests of CT Number attenuation coefficient variations, Noise, and Uniformity which are phantom image evaluation items, they proved to be better than Bismuth shielding boards. If various shielding boards are made using aluminum and silicone, sized appropriately for superficial organs, it would be useful in decreasing patient doses.

Evaluating efficiency of Vertical MLC VMAT plan for naso-pharyngeal carcinoma (비인두암 Vertical MLC VMAT plan 유용성 평가)

  • Chae, Seung Hoon;Son, Sang Jun;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.127-135
    • /
    • 2021
  • Purpose : The purpose of the study is to evaluate the efficiency of Vertical MLC VMAT plan(VMV plan) Using 273° and 350° collimator angle compare to Complemental MLC VMAT plan(CMV plan) using 20° and 340° collimator angle for nasopharyngeal carcinoma. Materials & Methods : Thirty patients treated for nasopharyngeal carcinoma with the VMAT technique were retrospectively selected. Those cases were planned by Eclipse, PO and AcurosXB Algorithm with two 6MV 360° arcs and Each arc has 273° and 350° of collimator angle. The Complemental MLC VMAT plans are based on existing treatment plans. Those plans have the same parameters of existing treatment plans but collimator angle. For dosimetric evaluation, the dose-volumetric(DV) parameters of the planning target volume (PTV) and organs at risk (OARs) were calculated for all VMAT plans. MCSv(Modulation complexity score of VMAT), MU and treatment time were also compared. In addition, Pearson's correlation analysis was performed to confirm whether there was a correlation between the difference in the MCSv and the difference in each evaluation index of the two treatment plans. Result : In the case of PTV evaluation index, the CI of PTV_67.5 was improved by 3.76% in the VMV Plan, then for OAR, the dose reduction effect of the spinal cord (-14.05%) and brain stem (-9.34%) was remarkable. In addition, the parotid glands (left parotid : -5.38%, right : -5.97%) and visual organs (left optic nerve: -4.88%, right optic nerve: -5.80%, optic chiasm : -6.12%, left lens: -6.12%, right lens: -5.26%), auditory organs (left: -11.74%, right: -12.31%) and thyroid gland (-2.02%) were also confirmed. The difference in MCSv of the two treatment plans showed a significant negative (-) correlation with the difference in CI (r=-0.55) of PTV_54 and the difference in CI (r=-0.43) of PTV_48. Spinal cord (r=0.40), brain stem (r=0.34), and both salivary glands (left: r=0.36, right: r=0.37) showed a positive (+) correlation. (For all the values, p<.05) Conclusion : Compared to the CMV plan, the VMV plan is considered to be helpful in improving the quality of the treatment plan by allowing the MLC to be modulated more efficiently

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.

Comparison and evaluation of volumetric modulated arc therapy and intensity modulated radiation therapy plans for postoperative radiation therapy of prostate cancer patient using a rectal balloon (직장풍선을 삽입한 전립선암 환자의 수술 후 방사선 치료 시 용적변조와 세기변조방사선치료계획 비교 평가)

  • Jung, hae youn;Seok, jin yong;Hong, joo wan;Chang, nam jun;Choi, byeong don;Park, jin hong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Purpose : The dose distribution of organ at risk (OAR) and normal tissue is affected by treatment technique in postoperative radiation therapy for prostate cancer. The aim of this study was to compare dose distribution characteristic and to evaluate treatment efficiency by devising VMAT plans according to applying differed number of arc and IMRT plan for postoperative patient of prostate cancer radiation therapy using a rectal balloon. Materials and Methods : Ten patients who received postoperative prostate radiation therapy in our hospital were compared. CT images of patients who inserted rectal balloon were acquired with 3 mm thickness and 10 MV energy of HD120MLC equipped Truebeam STx (Varian, Palo Alto, USA) was applied by using Eclipse (Version 11.0, Varian, Palo Alto, USA). 1 Arc, 2 Arc VMAT plans and 7-field IMRT plan were devised for each patient and same values were applied for dose volume constraint and plan normalization. To evaluate these plans, PTV coverage, conformity index (CI) and homogeneity index (HI) were compared and $R_{50%}$ was calculated to assess low dose spillage as per treatment plan. $D_{25%}$ of rectum and bladder Dmean were compared on OAR. And to evaluate the treatment efficiency, total monitor units(MU) and delivery time were considered. Each assessed result was analyzed by average value of 10 patients. Additionally, portal dosimetry was carried out for accuracy verification of beam delivery. Results : There was no significant difference on PTV coverage and HI among 3 plans. Especially CI and $R_{50%}$ on 7F-IMRT were the highest as 1.230, 3.991 respectively(p=0.00). Rectum $D_{25%}$ was similar between 1A-VMAT and 2A-VMAT. But approximately 7% higher value was observed on 7F-IMRT compare to the others(p=0.02) and bladder Dmean were similar among the all plan(P>0.05). Total MU were 494.7, 479.7, 757.9 respectively(P=0.00) for 1A-VMAT, 2A-VMAT, 7F-IMRT and at the most on 7F-IMRT. The delivery time were 65.2sec, 133.1sec, 145.5sec respectively(p=0.00). The obvious shortest time was observed on 1A-VMAT. All plans indicated over 99.5%(p=0.00) of gamma pass rate (2 mm, 2%) in portal dosimetry quality assurance. Conclusion : As a result of study, postoperative prostate cancer radiation therapy for patient using a rectal balloon, there was no significant difference of PTV coverage but 1A-VMAT and 2A-VMAT were more efficient for dose reduction of normal tissue and OARs. Between VMAT plans. $R_{50%}$ and MU were little lower in 2A-VMAT but 1A-VMAT has the shortest delivery time. So it is regarded to be an effective plan and it can reduce intra-fractional motion of patient also.

  • PDF

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.