• Title/Summary/Keyword: Beam Modifiers

Search Result 7, Processing Time 0.02 seconds

The Variation of PSF Induced Enlarged Wedged Fields (확장된 쐐기조사야에 의한 조직산란계수의 변화)

  • Lee, Jeong-Woo;Cho, Hwa-Seop;Park, Seong-Ryul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.97-101
    • /
    • 1998
  • In recent days, although many kinds of beam modifiers are developing and using for clinical purposes in accordance with progressing medical engineering, physical wedges are preferred to use as a beam modifier by a lot of institutions until now because of cost, complexities of dosimetry and mechanical uncertainties. According to progressing technology, available field size of wedge is more enlarger than that of old model LINAC. Because field size dependence of wedged fields increases in new model LINAC, we was trying to know that how much different PSFs are in enlarged wedged fields compared with open fields. In small or middle size of fields($4{\times}4{\sim}15{\times}15cm$), there are only a few percents of PSF variation between open and wedged fields. But there are $2{\sim}8\%\;variations\;in\;relatively\;large\;fields(20{\times}20{\sim}30{\times}40cm)$.

  • PDF

Equations for Calculating Lateral-Torsional Buckling Capacity of H-Beam with Continuous Lateral Top-Flange Bracing (상부플랜지 연속 횡지지에 따른 초간편 H형강의 횡-비틀림 좌굴강도식 비교에 관한 연구)

  • Park, Jong-Sup;Lee, Son-Ho;Yoon, Ki-Young;Park, Jeong-Ung;Kim, Snag-Seup
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.437-440
    • /
    • 2007
  • Design equations for calculating the lateral-torsional buckling moment resistances of I-section beams with continuous lateral top-flange bracing subjected to several loading conditions are investigated based on elastic finite-element analyses. The equations presented in this study are compared with current moment gradient modifiers presented by other researchers and specifications. The equation suggested in the SSRC Guides(1998) has a good agreement with the results of finite-element analyses. The moment gradient correction factors proposed in the SSRC Guides(1998) should be easily used to calculate the lateral-torsional buckling moment resistance of I-beams with continuous lateral top-flange bracing.

  • PDF

Dose Computational Time Reduction For Monte Carlo Treatment Planning

  • Park, Chang-Hyun;Park, Dahl;Park, Dong-Hyun;Park, Sung-Yong;Shin, Kyung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.116-118
    • /
    • 2002
  • It has been noted that Monte Carlo simulations are the most accurate method to calculate dose distributions in any material and geometry. Monte Carlo transport algorithms determine the absorbed dose by following the path of representative particles as they travel through the medium. Accurate Monte Carlo dose calculations rely on detailed modeling of the radiation source. We modeled the effects of beam modifiers such as collimators, blocks, wedges, etc. of our accelerator, Varian Clinac 600C/D to ensure accurate representation of the radiation source using the EGSnrc based BEAM code. These were used in the EGSnrc based DOSXYZ code for the simulation of particles transport through a voxel based Cartesian coordinate system. Because Monte Carlo methods use particle-by-particle methods to simulate a radiation transport, more particle histories yield the better representation of the actual dose. But the prohibitively long time required to get high resolution and accuracy calculations has prevented the use of Monte Carlo methods in the actual clinical spots. Our ultimate aim is to develop a Monte Carlo dose calculation system designed specifically for radiation therapy planning, which is distinguished from current dose calculation methods. The purpose of this study in the present phase was to get dose calculation results corresponding to measurements within practical time limit. We used parallel processing and some variance reduction techniques, therefore reduced the computational time, preserving a good agreement between calculations of depth dose distributions and measurements within 5% deviations.

  • PDF

Elastic Lateral Buckling Strength of Singly Stepped Beams with Load Height Effect (하중고 효과를 고려한 일단 변단면보의 탄성좌굴강도식 개발)

  • Park Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • New design equations for calculating the lateral-torsional buckling moment resistances of singly stepped I-section beams subjected to general loading on the top flange are suggested based on the investigations of elastic finite-element analyses. The new equations presented in this study are compared with current moment gradient modifiers presented by other researchers and specifications. The study considered almost loading cases on buildings and bridges. The proposed equations should be easily used to calculate the lateral-torsional buckling moment resistance of stepped I-beams.

  • PDF

Modified Moment Gradient Correction Factor of Nonprismatic Beams (변단면보의 개선된 모멘트 구배 수정계수)

  • Park, Jong Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.191-201
    • /
    • 2006
  • New design equations for calculating the lateral-torsional buck ling moment resistances of stepped I-section beams with/without continuous lateral top-flange bracing subjected to a point load, a series of point loads, and a uniformly distributed load, are suggested based on the results of elastic finite-element analyses. The new equations presented in this study are compared with the current moment gradient modifiers presented by other researchers and specifications. Although the study paper presents mainly stepped-beam cases subjected to a point load and a uniformly distributed load. The proposed equations include the length-to-height ratio effects for stepped beams with continuous lateral top-flange bracing. The new moment gradient correction factors could be easily used to calculate the lateral-torsional buckling moment resistance of stepped I-beams.

Real-Time XRD Analysis of Polystyrene/Clay Nanocomposites by In-Situ Polymerization (In-situ 중합법에 의한 폴리스티렌/점토 나노복합재료의 실시간 X선 분석)

  • Kim, Jang-Yup;Hwang, Seok-Ho;Hong, Yoo-Seok;Huh, Wan-Soo;Lee, Sang-Won
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.87-90
    • /
    • 2005
  • In this study, we have examined the exfoliation behavior of layered clay during in-situ polymeriztion with styrene by using real-time XRD analysis. The 4C1 beam line at the Pohang Accelerator Laboratory (PAL) was used for this study. Different exfoliation behaviors have been shown to depend on the cation exchange capacity (CEC) of clay and the chemical structure of organic modifiers. For 10A-MMT and 15A-MMT having high CEC, no peak shifts were observed on real-time XRD analysis during polymerization. However, 2$\theta$ for 25A-MMT and VDAC-MMT, each having low CEC’s as well as aromatic benzene moieties and vinyl groups, respectively, decreased as polymerization time increased.