• Title/Summary/Keyword: Beam Expansion

Search Result 224, Processing Time 0.027 seconds

Development of Bio-ballistic Device for Laser Ablation-induced Drug Delivery

  • Choi, Ji-Hee;Gojani, Ardian B.;Lee, Hyun-Hee;Jeung, In-Seuk;Yoh, Jack J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.68-71
    • /
    • 2008
  • Transdermal and topical drug delivery with minimal tissue damage has been an area of vigorous research for a number of years. Our research team has initiated the development of an effective method for delivering drug particles across the skin (transdermal) for systemic circulation, and to localized (topical) areas. The device consists of a micro particle acceleration system based on laser ablation that can be integrated with endoscopic surgical techniques. A layer of micro particles is deposited on the surface of a thin metal foil. The rear side of the foil is irradiated with a laser beam, which generates a shockwave that travels through the foil. When the shockwave reaches the end of the foil, it is reflected as an expansion wave and causes instantaneous deformation of the foil in the opposite direction. Due to this sudden deformation, the microparticles are ejected from the foil at very high speeds, and therefore have sufficient momentum to penetrate soft body tissues. We have demonstrated this by successfully delivering cobalt particles $3\;{\mu}m$ in diameter into gelatin models that represent soft tissue with remarkable penetration depth.

High Power Laser Driven Shock Compression of Metals and Its Innovative Applications (고 출력 레이저에 의한 충격파 현상 연구 및 응용)

  • Lee, Hyun-Hee;Gwak, Min-Cheol;Choi, Ji-Hee;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.832-840
    • /
    • 2008
  • Ablation occurs at irradiance beyond $10^9\;W/cm^2$ with nanosecond and short laser pulses focused onto any materials. Phenomenologically, the surface temperature is instantaneously heated past its vaporization temperature. Before the surface layer is able to vaporize, underlying material will reach its vaporization temperature. Temperature and pressure of the underlying material are raised beyond their critical values, causing the surface to explode. The pressure over the irradiated surface from the recoil of vaporized material can be as high as $10^5\;MPa$. The interaction of high power nanosecond laser with a thin metal in air has been investigated. The nanosecond pulse laser beam in atmosphere generates intensive explosions of the materials. The explosive ejection of materials make the surrounding gas compressed, which form a shock wave that travels at several thousand meters per second. To understand the laser ablation mechanism including the heating and ionization of the metal after lasing, the temporal evolution of shock waves is captured on an ICCD camera through laser flash shadowgraphy. The expansion of shock wave in atmosphere was found to agree with the Sedov's self-similar spherical blast wave solution.

Improvement of Structural Performance for the Precast Box Culvert (지하 프리캐스트 박스 암거의 구조적 성능 개선에 관한 연구)

  • 조병완;태기호;이계삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.393-398
    • /
    • 2000
  • To use concrete box culverts effectively, precast goods are manufactured at a factory, then linked and anchored with prestressing tendon at a field. However, the corrosion of rebar and prestressing tendon in the box culverts utilizing portland cement concrete is issued when the cracks occur at a underground water level. It has been reported that reported that expansive concrete, compared with portland cement concrete, has many structural advantages such as increasing capacity of watertight, controling initial crack and improving durability due to its property of expansion. During flexure test with RC beam made from expansive concrete, in the case of a constant section of concrete element, the lower steel ratio is, and in the case of a constant steel ratio, the more incremental the section of concrete element, the more incremental the amount of chemical prestress by expansive concrete is. At the segment of the box culverts using expansive concrete, the numbers of crack and its gap is reduced, and ultimate load and initial crack load is much larger than the segment at which expansive concrete is nor used. Also lay-out of tendon with a curvature generate upward force so that deflection is reduced. Through the whole procedure, it could be confirmed that performance precast box culvert by means of using expansive concrete is improved.

  • PDF

Interaction of Laser Beam with PZT - Target and Observation of Laser - Induced Plume and Particle Ejection (Laser와 PZT - Target간의 반응과 그에 따른 Plume 형성 및 입자 방출에 관한 연구)

  • Lee, Byeong-U
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.93-102
    • /
    • 1996
  • Laser-induced plume and laser-target interaction during pulsed laser deposition are demonstrated for a lead zirconate titanate (PZT). A KrF excimer laser (wavelength 248nm) was used and the laser was pulsed at 20Hz, with nominal pulse width of 20ns. The laser fluence was~$16J/cm^2,$ with 100mJ per pulse. The laser-induced plasma plume for nanosecond laser irradiation on PZT target has been investigated by optical emission spectra using an optical multichannel analyzer(OMA) and by direct observation of the plume using an ICCD high speed photography. OMA analysis showed two distinct ionic species with different expansion velocities of fast or slow according to their ionization states. The ion velocity of the front surface of the developing plume was about $10^7$cm/sec and corresponding kinetic energy was about 100eV. ICCD photograph showed another kind of even slower moving particles ejected from the target. These particles considered expelled molten parts of the target. SEM morphologies of the laser irradiated targets showed drastic melting and material removal by the laser pulse, and also showed the evidence of the molten particle ejection. The physics of the plasma(plume) formation and particle ejection has been discussed.

  • PDF

Development of the Welded Bellows for KSTAR Vacuum Vessel (KSTAR 진공용기용 용접 Bellows 개발)

  • Her, N.I.;Kim, B.C.;Kim, G.H.;Hong, G.H.;Sa, J.W.;Kim, H.K.;Kim, K.M.;Bak, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1098-1102
    • /
    • 2003
  • Vacuum vessel of the KSTAR(Korea Superconducting Tokamak Advanced Research) tokamak is a fully welded structure with D-shaped cross-section. According to the requirements of the physics design, sixteen horizontal ports, sixteen slanted ports, sixteen baking and cooling ports, and twenty-four top and bottom vertical ports are designed for the diagnostics, plasma heating, vacuum pumping, and baking and cooling. Bellows on these ports are used for flexible components to absorb the relative displacement due to the vacuum vessel thermal expansion and the electromagnetic force between the vacuum vessel and the cryostat ports. Fatigue strength evaluation was performed to decide the dimension of the bellows. In order to assure the quality of the bellows, a prototype bellows for the neutral beam injection port has been fabricated and tested prior to main fabrication. It was conformed that the prototype bellows has sufficient fatigue strength and vacuum reliability in the expected load conditions.

  • PDF

Welding Characteristics of Rapid Palatal Expander for Teeth Calibration using a Continuous Wave Nd:YAG Laser (연속파 Nd:YAG 레이저를 이용한 치아교정 급속 구개확장장치 용접특성)

  • Yoo, Young-Tae;Yang, Yun-Seok;Shin, Ho-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.40-49
    • /
    • 2010
  • The Purpose of this paper is to weld a rapid palatal expander using a continuous wave Nd:YAG laser. The rapid palatal expander has become a useful treatment method for severe maxillary transverse deficiencies and posterior crossbites. Rapid maxillary expansion is a well-established method to correct transverse maxillary deficiency and arch length discrepancy. The major process parameters studied in the present laser welding experiment were the positions of focus, laser power and travel speed of laser beam. We measured the fusion zone size and its shape using an optical microscope for the observation of cross-sectional area and tension stress of a rapid palatal expander welded. Through the experimental investigation, the optimum speeds and power of laser without deficiencies of weld cross-sectional area were obtained.

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

CONTACT FORCE MODEL FOR A BEAM WITH DISCRETELY SPACED GAP SUPPORTS AND ITS APPROXIMATED SOLUTION

  • Park, Nam-Gyu;Suh, Jung-Min;Jeon, Kyeong-Lak
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.447-458
    • /
    • 2011
  • This paper proposes an approximated contact force model to identify the nonlinear behavior of a fuel rod with gap supports; also, the numerical prediction of interfacial forces in the mechanical contact of fuel rods with gap supports is studied. The Newmark integration method requires the current status of the contact force, but the contact force is not given a priori. Taylor's expansion can be used to predict the unknown contact force; therefore, it should be guaranteed that the first derivative of the contact force is continuous. This work proposes a continuous and differentiable contact force model with the ability to estimate the current state of the contact force. An approximated convex and differentiable potential function for the contact force is described, and a variational formulation is also provided. A numerical example that considers the particularly stiff supports has been studied, and a fuel rod with hardening supports was also examined for a realistic simulation. An approximated proper solution can be obtained using the results, and abrupt changes from the contacting state to non-contacting state, or vice versa, can be relieved. It can also be seen that not only the external force but also the developed contact force affects the response.

Vibration and Stability Control of Rotating Composite Shafts via Collocated Piezoelectic Sensing and Actuation (압전감지기 및 압전작동기를 이용한 복합재료 회전축의 진동 및 안전성 제어)

  • Jeong, Nam-Heui;Kang, Ho-Shik;Yoon, Il-Sung;Song, Oh-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.152-159
    • /
    • 2007
  • A study on the control of free vibration and stability characteristics of rotating hollow circular shafts subjected to compressive axial forces is presented in this paper. Both passive structural tailoring technique and active control scheme via collocated piezoelectric sensing and actuation are used in the study Gyroscopic and centrifugal forces combined with the compressive axial force contribute to the occurrence of divergence and flutter instabilities of the rotating shaft. The dual methodology based on the passive and active control schemes shows a high degree of efficiency toward postponement of these instabilities and expansion of the domain of stability of the system. The structural model of the shaft is based on an advanced thin-walled beam structure that includes the non-classical effects of transverse shear, anisotropy of constituent materials and rotatory inertia.

Development of an Acoustic-Based Underwater Image Transmission System

  • Choi, Young-Cheol;Lim, Yong-Kon;Park, Jong-Won;Kim, Sea-Monn;Kim, Seung-Geun;Kim, Sang-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.109-114
    • /
    • 2003
  • Wireless communication systems are inevitable for efficient underwater activities. Because of the poor propagation characteristics of light and electromagnetic waves, acoustic waves are generally used for the underwater wireless communication. Although there are many kinds of information type, visual images take an essential role especially for search and identification activities. For this reason, we developed an acoustic-based underwater image transmission system under a dual use technology project supported by MOCIE (Ministry of Commerce, Industry and Energy). For the application to complicated and time-varying underwater environments all-digital transmitter and receiver systems are investigated. Array acoustic transducers are used at the receiver, which have the center frequency of 32kHz and the bandwidth of 4kHz. To improve transmission speed and quality, various algorithms and systems are used. The system design techniques will be discussed in detail including image compression/ decompression system, adaptive beam- forming, fast RLS adaptive equalizer, ${\partial}/4$ QPSK (Quadrilateral Phase Shift Keying) modulator/demodulator, and convolution coding/ Viterbi. Decoding.

  • PDF