• 제목/요약/키워드: Beads mill

검색결과 10건 처리시간 0.029초

Characterization of denaturation and renaturation of DNA for DNA hybridization

  • Wang, Xiaofang;Lim, Hyun Jeong;Son, Ahjeong
    • Environmental Analysis Health and Toxicology
    • /
    • 제29권
    • /
    • pp.7.1-7.8
    • /
    • 2014
  • Objectives The present study was designed to systematically characterize the denaturation and the renaturation of double stranded DNA (dsDNA), which is suitable for DNA hybridization. Methods A series of physical and chemical denaturation methods were implemented on well-defined 86-bp dsDNA fragment. The degree of each denaturation was measured and the most suitable denaturation method was determined. DNA renaturation tendency was also investigated for the suggested denaturation method. Results Heating, beads mill, and sonication bath did not show any denaturation for 30 minutes. However probe sonication fully denatured DNA in 5 minutes. 1 mol/L sodium hydroxide (alkaline treatment) and 60% dimethyl sulfoxide (DMSO) treatment fully denatured DNA in 2-5 minutes. Conclusions Among all the physical methods applied, the direct probe sonication was the most effective way to denature the DNA fragments. Among chemical methods, 60% DMSO was the most adequate denaturation method since it does not cause full renaturation during DNA hybridization.

The Disruption of Saccharomyces cerevisiae Cells and Release of Glucose 6-Phosphate Dehydrogenase (G6PDH) in a Horizontal Dyno Bead Mill Operated in Continuous Recycling Mode

  • Mei Chow Yen;Ti Tey Beng;Ibrahim Mohammad Nordin;Ariff Arbakariya;Chuan Ling Tau
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권3호
    • /
    • pp.284-288
    • /
    • 2005
  • Baker's yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to $50\%$(w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of $20\%$(ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to $85\% (v/v)$. Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than $20\%(w/v)$ and 10 m/s, respectively.

흄드실리카로부터 제조된 실리카졸의 분산인자 상관성 연구 (Correlation Research of Dispersion Factors on the Silica Sol Prepared from Fumed Silica)

  • 박민경;김훈;임형미;최진섭;김대성
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.136-142
    • /
    • 2016
  • To study the dispersion factors of silica sol prepared from fumed silica powder, we prepared silica sol under an aqueous system using a batch type bead mill. The dispersion properties of silica sol have a close relationship to dispersion factors such as pH, milling time and speed, the size and amount of zirconia beads, the solid content of fumed silica, and the shape and diameter of the milling impellers. Especially, the silica particles in silica sol were found to show dispersion stability on a pH value above 7, due to the electrostatic repulsion between the particles having a high zeta potential value. The shape and diameter of the impellers installed in the bead mill for the dispersion of fumed silica was very important in reducing the particle size of the aggregated silica. The median particle size ($D_{50}$) of silica sol obtained after milling was also optimized according to the variation of the size and amount of the zirconia beads that were used as the grinding medium, and according to the solid content of fumed silica. The dispersion properties of silica sol were investigated using zeta potential, turbiscan, particle size analyzer, and transmission electron microscopy.

Synthesis of Nano-Sized Y3Al5O12:Ce3+ Phosphors Prepared by High Energy Beads Milling Process and Their Luminescence Properties

  • Song, Hee-Jo;Kim, Dong-Hoe;Park, Jong-Hoon;Han, Byung-Suh;Hong, Kug-Sun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.386-386
    • /
    • 2012
  • For white light emitting diode (LED) applications, it has been reported that Y3Al5O12:Ce3+ (YAG:Ce) in nano-sized phosphor performs better than it does in micro-sized particles. This is because nano-sized YAG:Ce can reduce internal light scattering when coated onto a blue LED surface. Recently, there have been many reports on the synthesis of nano-sized YAG particles using bottom-up method, such as co-precipitation method, sol-gel process, hydrothermal method, solvothermal method, and glycothermal method. However, there has been no report using top-down method. Top-down method has advantages than bottom-up method, such as large scale production and easy control of doping concentration and particle size. Therefore, in this study, nano-sized YAG:Ce phosphors were synthesized by a high energy beads milling process with varying beads size, milling time and milling steps. The beads milling process was performed by Laboratory Mill MINICER with ZrO2 beads. The phase identity and morphology of nano-sized YAG:Ce were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FESEM), respectively. By controlling beads size, milling time and milling steps, we synthesized a size-tunable and uniform nano-sized YAG:Ce phosphors which average diameters were 100, 85 and 40 nm, respectively. After milling, there was no impurity and all of the peaks were in good agreement with YAG (JCPDS No. 33-0040). Luminescence and quantum efficiency (QE) of nano-sized YAG:Ce phosphors were measured by fluorescence spectrometer and QE measuring instrument, respectively. The synthesized YAG:Ce absorbed light efficiently in the visible region of 400-500 nm, and showed single broadband emission peaked at 550 nm with 50% of QE. As a result, by considering above results, high energy beads milling process could be a facile and reproducible synthesis method for nano-sized YAG:Ce phosphors.

  • PDF

Preparation of Spherical Granules of Dolomite Kiln Dust as Gas Adsorbent

  • Choi, Young-Hoon;Huh, Jae-Hoon;Lee, Shin-Haeng;Han, Choon;Ahn, Ji-Whan
    • 한국세라믹학회지
    • /
    • 제53권1호
    • /
    • pp.13-17
    • /
    • 2016
  • It is highlighted that increasing the adsorbent surface area on volumetric basis is very important in providing an easy access for gas molecules. Fine particles around $3{\mu}m$ of soft-burned dolomite kiln dust (SB-DKD) were hydrated to wet slurry samples by ball mill process and then placed in a chamber to use spray dryer method. Spherical granules with particle size distribution of $50{\sim}60{\mu}m$ were prepared under the experimental condition with or without addition of a pore-forming agent. The relationship between bead size of the pore-forming agent and size of SB-DKD particles is the most significant factor in preparation of spherical granules with a high porosity. Whereas addition of smaller beads than SB-DKD resulted in almost no change in the surface porosity of spherical granules, addition of larger beads than SB-DKD contributed to obtaining of the particles with both 15 times larger average pore volume and 1 order of magnitude larger porosity. It is considered that spherical granules with improved $N_2$ gas adsorption ability may also be utilized for other atmospheric gas adsorption.

Recovery of Intracel lular Biomaterials from the Suspension of Lysed or Disintegrated Yeast by Membranes

  • Matsumoto, Kanji
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1994년도 추계 총회 및 학술발표회
    • /
    • pp.1-6
    • /
    • 1994
  • Many useful biomaterials like enzymes are contained in yeast cells. However, the release of these intracellular biomateriais from the cells is required to recover them with hot water, solvent or various cell breakage methods of mechanical or non mechanical ones. The cell lysis or breakage of yeast is usually made by solvent like ethyl acetate and mechanical disintrgration with high pressure homogenizer or agitating beads mill. The separation of cell debris (i.e. solid liquid separation) is done by centrifuge or membrane depending on the recovery conditions. The features of both separation methods are shown in Tables 1 and 2. As it is often difficult to obtain a clear supernatant by centrifuge from the suspension containing cell debris, the membrane separation is also often used to gel a clear supernatant. In this report we introduce the several applications of membrane separation to separate the cell debris of yeast disintegrated chemically or mechanically and to recover the intracellular biomaterials.

  • PDF

UV 경화형 단량체계 실리카 분산체의 점도 특성 및 유변학적 거동 (The Viscosity and Rheology of the Silica Dispersion System with UV Curable Monomers)

  • 안재범;조봉상;유의상;노시태
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.292-299
    • /
    • 2012
  • Beads mill 분산 공정을 통하여 8 wt%의 나노 사이즈 흄드 실리카(일차 입자크기 12 nm)를 광경화형 아크릴 시스템용 단량체에 분산하여 실리카 분산체를 제조하였다. 이러한 분산체는 유/무기 하이브리드 코팅 재료에 응용이 가능하다고 알려져 있다. 하이드록시기 유무, 용해도 상수(solubility parameter, Sp, 극성도 ${\delta}_p$의 범위; 5.204~6.286($cal/cm^3)^{1/2}$), 분자 크기가 다른 4 종의 단량체를 사용하였다. 극성 용매인 이소프로필알코올(IPA)을 혼합하여 용매가 실리카 분산체의 안정성에 미치는 영향도 관찰하였다. 제조된 실리카 분산체는 레오미터를 이용하여 전단속도에 따른 전단 점도 거동과 주기적 진동흐름 하에서 동적 거동을 측정하여 분산체의 안정성을 유변학적 관점에서 관찰하였다. 단일 단량체계 및 혼합 단량체계 실리카 분산체에서 하이드록시기를 가진 단량체의 함량이 증가될수록 실리카 분산체는 손실탄성률(G")이 저장탄성률(G')보다 큰 입자가 응집되지 않는 안정한 졸의 거동을 나타내었다. 하이드록시기를 갖지 않은 단량체계 실리카 분산체는 분자 크기와 상관없이 입자가 응집되는 겔의 거동을 나타내었다. 단량체에 IPA를 혼합한 실리카 분산체는 IPA의 함량이 증가할수록 안정한 졸의 거동을 보였다.

LCD 컬러필터용 밀베이스의 분산 연구 (A Study on the Millbase Dispersion for LCD Color Filters)

  • 정일봉;안석출;남수용
    • 청정기술
    • /
    • 제14권1호
    • /
    • pp.21-28
    • /
    • 2008
  • 본 연구에서는 LCD 컬러필터에 사용되는 밀베이스를 제조하기 위해 Red, Green, Blue 안료 분산에 대한 특성을 연구하였다. 또한 기존의 포토리소그라피 방법을 대체할 수 있는 스크린 인쇄 방식에 적용할 수 있도록 물성 및 점도를 맞추었다. 분산제는 BYK-2000, 모노머는 EB-140이 가장 우수한 분산 특성을 나타내었다. Torus mill을 사용하여 millbase를 500 rpm으로 30 min 동안 pre-mixing한 뒤, 4000 rpm으로 $5{\sim}6$시간 분산시켜서 Red $100{\sim}110\;nm$, Green $50{\sim}70\;nm$, Blue $60{\sim}80\;nm$의 분산 결과를 얻을 수 있었다. 저점도 type 포물레이션에서 millbase의 점도가 $200{\sim}300\;cps$ 일 때 비드의 충격력이 충분히 발휘되었으며, 레오로지 거동 및 색특성을 통하여 분산성이 확보되었음을 확인하였다.

  • PDF

비수계 용매하에서 다양한 분산인자 및 실란 표면개질에 의해 제조된 Al2O3 나노졸의 분산 특성 (Dispersion Property of Al2O3 Nanosol Prepared by Various Dispersion Factors and Silane Modification under Non-Aqueous Solvent)

  • 나호성;박민경;임형미;김대성
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.733-740
    • /
    • 2016
  • $Al_2O_3$ nanosol dispersed under ethanol or N-Methyl-2-pyrrolidone(NMP) was studied and optimized with various dispersion factors and by utilizing the silane modification method. The two kinds of $Al_2O_3$ powders used were prepared by thermal decomposition method from aluminum ammonium sulfate$(AlNH_4(SO_4)_2)$ while controlling the calcination temperature. $Al_2O_3$ sol was prepared under ethanol solvent by using a batch-type bead mill. The dispersion properties of the $Al_2O_3$ sol have a close relationship to the dispersion factors such as the pH, the amount of acid additive(nitric acid, acetic acid), the milling time, and the size and combination of zirconia beads. Especially, $Al_2O_3$ sol added 4 wt% acetic acid was found to maintain the dispersion stability while its solid concentration increased to 15 wt%, this stability maintenance was the result of the electrostatic and steric repulsion of acetic acid molecules adsorbed on the surface of the $Al_2O_3$ particles. In order to observe the dispersion property of $Al_2O_3$ sol under NMP solvent, $Al_2O_3$ sol dispersed under ethanol solvent was modified and solvent-exchanged with N-Phenyl-(3-aminopropyl)trimethoxy silane(APTMS) through a binary solvent system. Characterization of the $Al_2O_3$ powder and the nanosol was observed by XRD, SEM, ICP, FT-IR, TGA, Particles size analysis, etc.

고에너지 볼밀링 방법에 의해 얻어진 초미립 AlN 분말의 치밀화 및 미세구조 (Densification and Microstructure of Ultrafine-sized AlN Powder Prepared by a High Energy Ball Milling Process)

  • 박해룡;김영도;류성수
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.25-31
    • /
    • 2012
  • In this study, a high energy ball milling process was employed in order to improve the densification of direct nitrided AlN powder. The densification behavior and the sintered microstructure of the milled AlN powder were investigated. Mixture of AlN powder doped with 5 wt.% $Y_2O_3$ as a sintering additive was pulverized and dispersed up to 50 min in a bead mill with very small $ZrO_2$ beads. Ultrafine AlN powder with a particle size of 600 nm and a specific surface area of 9.54 $m^2/g$ was prepared after milling for 50 min. The milled powders were pressureless-sintered at $1700^{\circ}C-1800^{\circ}C$ for 4 h under $N_2$ atmosphere. This powder showed excellent sinterability leading to full densification after sintering at $1700^{\circ}C$ for 4 h. However, the sintered microstructure revealed that the fraction of yitttium aluminate increased with milling time and sintering temperature and the newly-secondary phase of ZrN was observed due to the reaction of AlN with the $ZrO_2$ impurity.