• Title/Summary/Keyword: Beacon Error

Search Result 71, Processing Time 0.023 seconds

Beacon Node Based Localization Algorithm Using Received Signal Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks (무선 센서 네트워크에서 수신신호세기와 전력손실지수 추정을 활용하는 비콘 노드 기반의 위치 추정 기법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In the range-based localization, the localization accuracy will be high dependent on the accuracy of distance measurement between two nodes. The received signal strength(RSS) is one of the simplest methods of distance measurement, and can be easily implemented in a ranging-based method. However, a RSS-based localization scheme has few problems. One problem is that the signal in the communication channel is affected by many factors such as fading, shadowing, obstacle, and etc, which makes the error of distance measurement occur and the localization accuracy of sensor node be low. The other problem is that the sensor node estimates its location for itself in most cases of the RSS-based localization schemes, which makes the sensor network life time be reduced due to the battery limit of sensor nodes. Since beacon nodes usually have more resources than sensor nodes in terms of computation ability and battery, the beacon node based localization scheme can expand the life time of the sensor network. In this paper, therefore we propose a beacon node based localization algorithm using received signal strength(RSS) and path loss calibration in order to overcome the aforementioned problems. Through simulations, we prove the efficiency of the proposed scheme.

A Method to Construct a Cut-off Fingerprint Map to Improve Accuracy in Indoor Positioning Scheme (실내 위치 추정 방식에서 정확도를 향상시키기 위해 컷-오프 핑거프린트 지도를 구성하는 방식)

  • Kim, Dongjun;Son, Jooyoung
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1330-1337
    • /
    • 2017
  • In off-line phase of the preliminary Cut-off indoor positioning scheme, which is one of the indoor positioning scheme using the fingerprint, relative ranks of peak RSSIs received from beacons at each reference point are stored in the fingerprint map. In some reference points, signals of multiple beacons may be received. In this case, the relative ranks may be different when constructing fingerprint and when receiving signals in real-time. To solve this problem, we propose a method to utilize only up to five beacons with high ranking when constructing a fingerprint and when receiving signals in real-time and comparing them with stored information of a fingerprint. Experiments were conducted on the estimation probabilities and the average error when using this method. Those are compared with the previous methods. Experimental results show that the estimation probabilities and the average error are improved by removing only the remaining five beacons at each reference point of the fingerprint.

Frame Synchronization for Mobile WiMAX Femtocells Using IEEE802.11 Based Wireless Backhaul (IEEE 802.11 기반의 무선 백홀을 사용하는 Mobile WiMAX 펨토셀을 위한 프레임 동기화 기법)

  • Choi, Ji-Hoon;Oh, Hyuk-Jun;Yun, Jae-Yeun;Ko, Hyun-Mo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8C
    • /
    • pp.667-679
    • /
    • 2010
  • The use of femtocells in buildings and homes has been widely studied as a means to enlarge the cell coverage and increase the network capacity of mobile communication systems. Femtocells for Mobile WiMAX (M-WiMAX) using time division duplexing (TDD) requires frame synchronization with neighboring base stations to avoid interference between uplink and downlink signals. In this paper, we propose a new frame synchronization method for femtocell using IEEE 802.11 based wireless backhaul, which transfers the time information of mobile network to femtocells via the beacon signal provided by IEEE 802.11. Also, in order to reduce timing error of the proposed method, we modify the collision avoidance scheme in the transmitter of IEEE 802.11 and apply a timing estimation technique designed in the sense of least squares to the receiver of IEEE 802.11. Through computer simulations using the proposed scheme, we evaluate the performance of frame synchronization for femtocells and show that the recovered timing information satisfies the timing specification defined by M-WiMAX standard.

Accurate Estimation of Settlement Profile Behind Excavation Using Conditional Merging Technique (조건부 합성 기법을 이용한 굴착 배면 침하량 분포의 정밀 산정)

  • Kim, Taesik;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.39-44
    • /
    • 2016
  • Ground deformation around construction site in urban area where typically adjacent structures are located needs to be strictly controlled. Accordingly, it is very important to precisely monitor the ground deformation. Settlement beacon is typically employed to measure the ground deformation, but meanwhile the rapid development in electronic technology enables 3D image scanner to become available for measuring the ground deformation profile in usual construction sites. With respect to the profile measurement, the 3D scanner has an advantage, whereas its accuracy is somewhat limited because it does not measure the displacement directly. In this paper, we developed a conditional merging technique to combine the ground displacement measured from settlement beacon and the profile measured by the 3D scanner. Synthetic ground deformation profile was generated to validate the proposed technique. It is found that the ground deformation measurement error can be reduced significantly via the conditional merging technique.

Multi-directional DRSS Technique for Indoor Vehicle Navigation (실내 차량 내비게이션을 위한 다방향 DRSS 기술)

  • Kim, Seon;Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.936-942
    • /
    • 2022
  • While indoor vehicle navigation is an essential component in large-scale parking garages of major cities, technical limitations and challenging propagation environments considerably degrade the accuracy of existing localization techniques. This paper proposes a proximity detection scheme using low-cost beacons where a handheld mobile device within a moving vehicle autonomously detects its approximate position and moving direction by only observing Received Signal Strength (RSS) values of beacon signals. The proposed approach essentially exploits the differential RSS technique of multi-directional beams to reduce the impact of the environment, vehicle, and mobile device. A low-cost multi-directional beacon prototype is developed using Bluetooth technology. The localization performance is evaluated using 96 beacons in an underground parking garage within an area of 394.8m×304.3m. Experimental results show that the 90th percentile of the average proximity detection error is 0.8m. Furthermore, our proposed scheme provides robust proximity detection performance with various vehicles and mobile devices.

An Accuracy Assessment Scheme through Entropy Analysis in BLE-based Indoor Positioning Systems (BLE 기반 실내 측위 시스템에서 엔트로피 분석을 통한 정확도 평가 기법)

  • Pi, Kyung-Joon;Min, Hong;Han, Kyoungho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.117-123
    • /
    • 2022
  • Unlike the satellite-based outdoor positioning system, the indoor positioning system utilizes various wireless technologies such as BLE, Wi-Fi, and UWB. BLE-based beacon technology can measure the user's location by periodically broadcasting predefined device ID and location information and using RSSI from the receiving device. Existing BLE-based indoor positioning system studies have many studies comparing the error between the user's actual location and the estimated location at a single point. In this paper, we propose a technique to evaluate the positioning accuracy according to the movement path or area by applying the entropy analysis model. In addition, simulation results show that calculated entropy results for different paths can be compared to assess which path is more accurate.

Design and Implementation of MAC Protocol for Wireless LAN (무선 LAN MAC 계층 설계 및 구현)

  • 김용권;기장근;조현묵
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.253-256
    • /
    • 2001
  • This paper describes a high speed MAC(Media Access Control) function chip for IEEE 802.11 MAC layer protocol. The MAC chip has control registers and interrupt scheme for interface with CPU and deals with transmission/reception of data as a unit of frame. The developed MAC chip is composed of protocol control block, transmission block, and reception block which supports the BCF function in IEEE 802.11 specification. The test suite which is adopted in order to verify operation of the MAC chip includes various functions, such as RTS-CTS frame exchange procedure, correct IFS(Inter Frame Space)timing, access procedure, random backoff procedure, retransmission procedure, fragmented frame transmission/reception procedure, duplicate reception frame detection, NAV(Network Allocation Vector), reception error processing, broadcast frame transmission/reception procedure, beacon frame transmission/reception procedure, and transmission/reception FIEO operation. By using this technique, it is possible to reduce the load of CPU and firmware size in high speed wireless LAN system.

  • PDF

Position Fixing Method in Search and Rescue System with an Orbiting Satellite (궤도위성을 이용한 수색.구조 시스템에서 있어서의 조난위치 결정법에 관한 연구)

  • 안영섭;김동일
    • Journal of the Korean Institute of Navigation
    • /
    • v.12 no.3
    • /
    • pp.1-21
    • /
    • 1988
  • A Satellite -aided search and rescue system is expected for its many advantage of global coverage, instantaneousness and low cost. In this paper, a calculation method is proposed , by which a position of distress can be determined with doppler frequency received through an orbital satellite. First, an algorithm and program is developed for calculating the position of distress with the received doppler frequency of EPIRB(Emergency Position Indicating Radio Beacon) with the least square method. Then, position error caused by the drift of the transmitting frequency is evaluated. The evaluation is made by the simulation using NNSS satellite orbital elements and varying position of EPIRB, numbers of Doppler data and magnitudes of various errors. As the result, the availability of this program for a satellite-aided search and rescue system is confirmed and the bounds of expected positioning accuracy is clarified.

  • PDF

A Study On Precision Enhancement Of The Ship's Position By AIS-based DGPS Service (AIS기반 DGPS 서비스에 의한 선박위치정보 정밀도 향상에 관한 연구)

  • Roh, Joung-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.375-378
    • /
    • 2009
  • AIS ship position transmitted from ships has been used position data generated by GPS, whose range of error is approximately 30nm. However, precision enhancement of the ship's position could be possible using DGPS correction information. More precise and accurate AIS ship position could be obtained broadcasting DGNSS Message(AIS Message 17) from ships without high-priced DGPS Beacon Receivers.

  • PDF

Performance Analysis of Compensation Algorithm for Localization using Equivalent Distance Rate (균등거리비율을 적용한 위치인식 보정 알고리즘 설계 및 성능분석)

  • Kwon, Seong-Ki;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1248-1253
    • /
    • 2010
  • In this paper, the compensation algorithm for localization using the concept of equivalent distance rate(AEDR) in order to compensate ranging error in the SDS-TWR(Symmetric Double-Sided Two-Way Ranging) is proposed and the performance of the proposed algorithm is analyzed by the localization experiments. The ranging error of the SDS-TWR in the distance between mobile node and beacon node is measured to average 1m~8m by ranging experiments. But it is confirmed that the performance of the localization by the AEDR is better than that of the SDS-TWR 4 times in university auditorium and corridor, and the localization error of above 3~10m is reduced to average 2m and that of below 3m is reduced to average 1m respectively. It is concluded that the AEDR is superior to the NLOS(Non Line Of Sight) than LOS(Line Of Sight) in performance of ranging compensation for localization, and the AEDR is more helpful to localization systems practically considering the environment of sensor networks is under NLOS.