• Title/Summary/Keyword: Be isotope

Search Result 685, Processing Time 0.025 seconds

Estimation of Mass Discrimination Factor for a Wide Range of m/z by Argon Artificial Isotope Mixtures and NF3 Gas

  • Min, Deullae;Lee, Jin Bok;Lee, Christopher;Lee, Dong Soo;Kim, Jin Seog
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2403-2409
    • /
    • 2014
  • Absolute isotope ratio is a critical constituent in determination of atomic weight. To measure the absolute isotope ratio using a mass spectrometer, mass discrimination factor, $f_{MD}$, is needed to convert measured isotope ratio to real isotope ratio of gas molecules. If the $f_{MD}$ could be predicted, absolute isotope ratio of a chemical species would be measureable in absence of its enriched isotope pure materials or isotope references. This work employed gravimetrically prepared isotope mixtures of argon (Ar) to obtain $f_{MD}$ at m/z of 40 in the magnetic sector type gas mass spectrometer (gas/MS). Besides, we compare the nitrogen isotope ratio of nitrogen trifluoride ($NF_3$) with that of nitrogen molecule ($N_2$) decomposed from the same $NF_3$ thermally in order to identify the difference of $f_{MD}$ values in extensive m/z region from 28 to 71. Our result shows that $f_{MD}$ at m/z 40 was $-0.044%{\pm}0.017%$ (k = 1) from measurement of Ar artificial isotope mixtures. The $f_{MD}$ difference in the range of m/z from 28 to 71 is observed $-0.12%{\pm}0.14%$ from $NF_3$ and $N_2$. From combination of this work and reported $f_{MD}$ values by another team, IRMM, if $f_{MD}$ of $-0.16%{\pm}0.14%$ is applied to isotope ratio measurement from $N_2$ to $SF_6$, we can determine absolute isotope ratio within relative uncertainty of 0.2 %.

Determination of Li by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

  • Park, Chang J.;Chung, Bag S.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.427-434
    • /
    • 1995
  • Inductively coupled plasma mass spectrometry combined with the isotope dilution method is used for the determination of lithium. The isotope dilution method is based on the addition of a known amount of enriched isotope (spike) to a sample. The analyte concentration is obtained by measuring the altered isotope ratio. The spike solution is calibrated through so called reverse isotope dilution with a primary standard. The spike calibration is an important step to minimize error in the determined concentration. It has been found essential to add spike to a sample and the primary standard so that the two isotope ratios should be as dose as possible. Since lithium is neither corrosive nor toxic, lithium is used as a chemical tracer in the nuclear power plants to measure feedwater flow rate. 99.9% $^7Li$ was injected into a feedwater line of an experimental system and sample were taken downstream to be spiked with 95% $^6Li$ for the isotope dilution measurements. Effects of uncertainties in the spike enrichment and isotope ratio measurement error at various spike-to-sample ratios are presented together with the flow rate measurement results in comparison with a vortex flow meter.

  • PDF

Stable C and N Isotopes: A Tool to Interpret Interacting Environmental Stresses on Soil and Plant

  • Yun, Seok-In;Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.262-271
    • /
    • 2008
  • Natural abundances of stable isotopes of nitrogen and carbon (${\delta}^{15}N$ and ${\delta}^{13}C$) are being widely used to study N and C cycle processes in plant and soil systems. Variations in ${\delta}^{15}N$ of the soil and the plant reflect the potentially variable isotope signature of the external N sources and the isotope fractionation during the N cycle process. $N_2$ fixation and N fertilizer supply the nitrogen, whose ${\delta}^{15}N$ is close to 0%o, whereas the compost as. an organic input generally provides the nitrogen enriched in $^{15}N$ compared to the atmospheric $N_2$. The isotope fractionation during the N cycle process decreases the ${\delta}^{15}N$ of the substrate and increases the ${\delta}^{15}N$ of the product. N transformations such as N mineralization, nitrification, denitrification, assimilation, and the $NH_3$ volatilization have a specific isotope fractionation factor (${\alpha}$) for each N process. Variation in the ${\delta}^{13}C$ of plants reflects the photosynthetic type of plant, which affects the isotope fractionation during photosynthesis. The ${\delta}^{13}C$ of C3 plant is significantly lower than, whereas the ${\delta}^{13}C$ of C4 plant is similar to that of the atmospheric $CO_2$. Variation in the isotope fractionation of carbon and nitrogen can be observed under different environmental conditions. The effect of environmental factors on the stomatal conductance and the carboxylation rate affects the carbon isotope fractionation during photosynthesis. Changes in the environmental factors such as temperature and salt concentration affect the nitrogen isotope fractionation during the N cycle processes; however, the mechanism of variation in the nitrogen isotope fractionation has not been studied as much as that in the carbon isotope fractionation. Isotope fractionation factors of carbon and nitrogen could be the integrated factors for interpreting the effects of the environmental factors on plants and soils.

A Simple Carbamidomethylation-Based Isotope Labeling Method for Quantitative Shotgun Proteomics

  • Oh, Donggeun;Lee, Sun Young;Kwon, Meehyang;Kim, Sook-Kyung;Moon, Myeong Hee;Kang, Dukjin
    • Mass Spectrometry Letters
    • /
    • v.5 no.3
    • /
    • pp.63-69
    • /
    • 2014
  • In this study, we present a new isotope-coded carbamidomethylation (iCCM)-based quantitative proteomics, as a complementary strategy for conventional isotope labeling strategies, with providing the simplicity, ease of use, and robustness. In iCCM-based quantification, two proteome samples can be separately isotope-labeled by means of covalently reaction of all cysteinyl residues in proteins with iodoacetamide (IAA) and its isotope (IAA-$^{13}C_2$, $D_2$), denoted as CM and iCCM, respectively, leading to a mass shift of all cysteinyl residues to be + 4 Da. To evaluate iCCM-based isotope labeling in proteomic quantification, 6 protein standards (i.e., bovine serum albumin, serotransferrin, lysozyme, beta-lactoglobulin, beta-galactosidase, and alpha-lactalbumin) isotopically labeled with IAA and its isotope, mixed equally, and followed by proteolytic digestion. The resulting CM-/iCCM-labeled peptide mixtures were analyzed using a nLC-ESI-FT orbitrap-MS/MS. From our experimental results, we found that the efficiency of iCCM-based quantification is more superior to that of mTRAQ, as a conventional nonisobaric labeling method, in which both of a number of identified peptides from 6 protein standards and the less quantitative variations in the relative abundance ratios of heavy-/light-labeled corresponding peptide pairs. Finally, we applied the developed iCCM-based quantitative method to lung cancer serum proteome in order to evaluate the potential in biomarker discovery study.

Synthesis of 14C-Radio Isotope Labeled Quinolone Intermediates

  • Shin, Hyun-Il;Kim, Young-Seok;Lee, Ki-Seung;Song, Sung-Geun;Ye, In-He;Ham, Won-Hun;Oh, Chang-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.232.1-232.1
    • /
    • 2002
  • Methods of 14C-radio isotope labeling of quinolone intermediates at four different sites are described. 14C-radio isotope labeled quinolone intermediates can be synthesized from 14C-1-malonic acid, 14C-2-malonic acid, 14C-benzene ring. and 14C-trimethyl orthoformate. The major site of 14C-radio isotope labeled quinolone intermediates is from 14C-2-malonic acid. We want to help customers to choose the best way for synthesis of 14C-radio isotope labeled quinolone derivatives. and give a general comprehension for 14C-radio isotope labeled pharmaceutical compounds. (omitted)

  • PDF

Source Identification of Nitrate contamination in Groundwater of an Agricultural Site, Jeungpyeong, Korea

  • 전성천;이강근;배광옥;정형재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.63-66
    • /
    • 2003
  • This study applied a hydrogeological field survey and isotope investigation to identify source locations and delineate pathways of groundwater contamination by nitrogen compounds. The infiltration and recharge processes were analyzed with groundwater-level fluctuation data and oxygen-hydrogen stable isotope data. The groundwater flow pattern was investigated through groundwater flow modeling and spatial and temporal variation of oxygen isotope data. Based on the flow analysis and nitrogen isotope data, source types of nitrate contamination in groundwater are identified. Groundwater recharge largely occurs in spring and summer due to precipitation or irrigation water in rice fields. Based on oxygen isotope data and cross-correlation between precipitation and groundwater level changes, groundwater recharge was found to be mainly caused by irrigation in spring and by precipitation at other times. The groundwater flow velocity calculated by a time series of spatial correlations, 231 m/yr, is in good accordance with the linear velocity estimated from hydrogeologic data. Nitrate contamination sources are natural and fertilized soils as non-point sources, and septic and animal wastes as point sources. Seasonal loading and spatial distribution of nitrate sources are estimated by using oxygen and nitrogen isotopic data.

  • PDF

Seasonality of shellfish gathering using oxygen isotope analysis of Crassostrea gigas from the Neolithic Yeondae-do shell midden site, Tongyeong, Korea (산소동위원소 분석을 이용한 신석기시대 연대도 패총의 굴 (Crassostrea gigas) 채집 계절성 연구)

  • An, Deogim;Lee, Insung
    • The Korean Journal of Malacology
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • Oxygen isotope ratios (${\delta}^{18}O$) of three Pacific oyster (Crassostrea gigas) specimens from the Neolithic Yeondae-do shell midden site, Tongyeong, Korea, were analyzed to determine the seasonality of shellfish gathering and site occupation. Oxygen isotope samples were taken from the left valve hinge sections of the specimens. Oxygen isotope values ranged between -0.1 ‰ and -2.4 ‰, between -0.2 ‰ and -2.9 ‰, and between 0.3 ‰ and -2.8 ‰ in oyster specimen #one, #two and #three, respectively. The isotope profiles showed seasonal temperature cycles, providing information related to the seasonality of shellfish gathering and site occupation. Hinge-edge oxygen isotope values of the specimens showed decreasing trends after passing through maximum values (winter), indicating that they formed during spring. Thus it can be assumed that during spring season, oysters were gathered and the site was occupied.

Attenuation of Background Molecular Ions and Determination of Isotope Ratios by Inductively Coupled Plasma Mass Spectrometry at Cool Plasma Condition

  • 박창준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.706-710
    • /
    • 1997
  • Isotope ratios of K, Ca, Cr and Fe are measured at cool plasma condition generated using high carrier flow rate and relatively low RF power of 900 W. Background molecular ions are suppressed to below 100 counts which give isobaric interference to the analytes. The background ions show different attenuation characteristics at increased carrier flow rate and hence for each element different carrier flow rate should be used to measure isotope ratios without isobaric interference. Isotope ratios are measured at both scan and peak-hopping modes and compared with certified or accepted ratios. The measured isotope ratios show some mass discrimination against low mass due to low ion energy induced from a copper shield to eliminate capacitive coupling of plasma with load coil.

Seasonal and diel abundance and feeding patterns of Chaoborus flavicans in Sang-Chun reservoir

  • Jeong, Ga-Ram;Park, Sang-Kyu
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • To document the basic ecological aspects of Chaoborus species, which has never been reported in Korea, we attempted to identify the species, to monitor seasonal and vertical dynamics, and to elucidate trophic relations of the species in Sang-Chun reservoir. Using morphological characteristics, we identified the collected samples as C. flavicans. Also, we compared the distribution of C. flavicans, Daphnia rosea and chlorophyll a to observed seasonal dynamics. The increase of C. flavicans was observed 1-2 weeks after the increase of D. rosea. Survey of diel vertica migration patterns in the summer season showed that C. flavicans were in hypolimnion at daytime, but moved to the epilimnion at night. Finally, to determine trophic relationships in Sang-Chun reservoir, additional studies on the food web were undertaken by stable isotope analysis. Chaoborus flavicans I-II instars appear to be filter feeders based on carbon isotope values. Trophic levels of C. flavicans III-IV instars were shown to be higher than other zooplankto based on nitrogen isotope values.

Deuterium Naturally Present in Solvent and Site-Specific Isotope Population of Deuterium-Enriched Solute

  • Hwang, Ryeo Yun;Han, Oc Hee;Lee, Juhee;Kim, Eun Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2959-2962
    • /
    • 2013
  • As the concentration of aqueous $CD_3OH$ solutions was decreased, the OD peaks in $^2H$ NMR spectra grew relative to the $CD_3$ peaks. Isotope impurity for OH groups of $CD_3OH$ and deuterium naturally present in water contributed to the OD peaks. Using these peak area data, the site-specific isotope populations of isotope enriched chemicals were measured. In addition, the method using both $^1H$ and $^2H$ NMR spectroscopy was demonstrated with neat $CD_3OH$ to measure the site-specific isotope populations. The results indicate that although it represents only ~0.015% of hydrogen isotopes, the deuterium naturally present in solvents cannot be ignored, especially when the concentration of deuterium-enriched solutes is varied. Proton/deuteron exchange between methyl and methyl/hydroxyl groups was confirmed to be negligible, while that among hydroxyl groups was detectable.