• 제목/요약/키워드: Bcl2l10

검색결과 294건 처리시간 0.029초

Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Lim, HyangI;Seo, Jeong-Yeon;Park, Jong-Hyun;Chun, Hong Sung;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Kim, Do Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.447-456
    • /
    • 2022
  • The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation. Arctigenin-treated cells showed caspase-3/7 activation and increased apoptosis versus control cells. FasL, a death ligand associated with extrinsic apoptotic signaling pathways, was up-regulated by Arctigenin treatment. Moreover, caspase-8, a part of the extrinsic apoptotic pathway, was activated by Arctigenin treatments. Expressions of anti-apoptotic factors such as Bcl-2 and Bcl-xL, components of the mitochondria-dependent intrinsic apoptosis pathway, significantly decreased following Arctigenin treatment. The expressions of pro-apoptotic factors such as BAX, BAD and caspase-9, and tumor suppressor -53 increased by Arctigenin treatments. In addition, Arctigenin activated caspase-3 and poly (ADP-ribose) polymerase (PARP) induced cell death. Arctigenin also inhibited the proliferation of FaDu cells by the suppression of p38, NF-κB, and Akt signaling pathways. These results suggest that Arctigenin may inhibit cell proliferation and induce apoptotic cell death in FaDu human pharyngeal carcinoma cells through both the mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway.

Neuroprotective Effect of Dizocilpine (MK-801) via Anti-apoptosis on Hypoxic-ischemic Brain Injury in Neonatal Rats

  • Seo, Min-Ae;Lee, Hyun-Ju;Choi, Eun-Jin;Kim, Jin-Kyung;Chung, Hai-Lee;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • 제17권2호
    • /
    • pp.181-192
    • /
    • 2010
  • 목적: 비경쟁적 NMDA 길항제인 dizocilpine (MK-801)는 저산소성 허혈성 뇌병증, 외상성 뇌손상, 흥분독성과 같은 신경 질환의 동물 모델에서 보호 효과가 있다고 발표되고 있지만 주산기 가사로 인한 저산소성 허혈성 뇌병증의 치료제로서 그 기전이 명확하게 밝혀지지 않았다. 저자들은 dizocilpine을 이용하여 주산기 저산소성 허혈성 뇌병증의 치료제로서 항 세포사멸사을 통한 기전을 알아보고자 하였다. 방법: 생체외 실험으로 재태기간 19일된 태아 흰쥐의 대뇌피질 세포를 배양하여 3군(정상산소군, 저산소군, 뇌손상 전dizocilpine 투여군)으로 나누었다. 정상산소군은 5% $CO_2$ 배양기(95% air, 5% $CO_2$)에 두었고, 저산소군과 뇌손상 전 dizocilpine 투여군($10{\mu}g/mL$)은 1% $O_2$ 배양기(94% $N_2$, 5% CO2)에서 16시간 동안 뇌세포손상을 유도하였다. 생체내 실험으로 저산소성 허혈성 뇌병증의 동물 모델에서는 생후 7일된 신생백서의 좌측 총 경동맥을 결찰한 후 6개 군(정상산소군, 수술 없이 저산소군, sham 수술 후 저산소군, 수술 후 저산소군, vehicle 투여후 저산소군, dizocilpine 투여 후 저산소군)으로 나누었고, 저산소 손상은 특별히 제작한 통속에서 2시간 동안 8% $O_2$에 노출시켰다. Dizocilpine은 뇌손상 전후 30분에 체중 kg당 10 mg를 투여하였고, 저산소 손상 후 7일째 조직을 실험하였다. 생체외 내 실험 모두 세포사멸사와 관련된 Bcl-2, Bax, caspase-3항체와 primer를 이용하여 western blots과 실시간 중합효소연쇄반응을 실시하였다. 결과: 세포사멸사와 관련된 생체외 내 실험에서 Bcl-2의 발현은 저산소군에서 정상산소군보다 감소하였으나 dizocilpine 투여군에서 저산소군보다 증가하였다. 그러나 Bax와 caspase-3 발현 및 Bax/Bcl-2의 비는 반대로 표현되었다. 결론: 본 연구에서 dizocilpine은 항 세포사멸사를 통하여 주산기 저산소성 허혈성 뇌손상에서 신경보호 역할을 하는 것을 알 수 있었다.

Inhibitory Effect of Lactobacillus plantarum Extracts on HT-29 Colon Cancer Cell Apoptosis Induced by Staphylococcus aureus and Its Alpha-Toxin

  • Kim, Hangeun;Kim, Hye Sun;Park, Woo Jung;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권11호
    • /
    • pp.1849-1855
    • /
    • 2015
  • Staphylococcus aureus plays an important role in sepsis, septic shock, pneumonia, and wound infections. Here, we demonstrate that Lactobacillus plantarum extracts inhibited S. aureus-induced cell death of a human epithelial cell line, HT-29. In particular, we have shown that S. aureus-induced cell death was abolished by neutralization of α-toxin, indicating that α-toxin is the major mediator of S. aureus-induced cell death. DNA fragmentation experiment and caspase assay revealed that the S. aureus-induced cell death was apoptosis. L. plantarum extracts inhibited the generation of effector caspase-3 and the initiator caspase-9 in S. aureus- or α-toxin-induced cell death. Moreover, expression of Bcl-2, an anti-apoptotic protein, was activated in L. plantarum extract-treated cells as compared with the S. aureus- or α-toxin-treated only cells. Furthermore, S. aureus-induced apoptosis was efficiently inhibited by lipoteichoic acid and peptidoglycan of L. plantarum. Together, our results suggest that L. plantarum extracts can inhibit the S. aureus-mediated apoptosis, which is associated with S. aureus spreading, in intestinal epithelial cells, and may provide a new therapeutic reagent to treat bacterial infections.

The Antitumor Effects of Selenium Compound $Na_5SeV_5O_{18}{\cdot}3H_2O$ in K562 Cell

  • Yang, Jun-Ying;Wang, Zi-Ren
    • Archives of Pharmacal Research
    • /
    • 제29권10호
    • /
    • pp.859-865
    • /
    • 2006
  • With an approach to study the anti-tumor effects and mechanism of selenium compound, we investigated the anti-tumor activity and mechanism of $Na_5SeV_5O_{18}{\cdot}3H_2O$ (NaSeVO) in K562 cells. The results showed that $0.625{\sim}20\;mg/L$ NaSeVO could significantly inhibit the proliferation of K562 cells in vitro in a time- and concentration-dependent manner as determined by microculture tetrazolium (MTT) assay, the IC50 values were 14.41 (4.45-46.60) and 3.45 (2.29-5.22) mg/L after 48 hand 72 h treatment with NaSeVO respectively. In vivo experiments demonstrated that i.p. administration of 5, 10 mg/kg NaSeVO exhibited an significant inhibitory effect on the growth of transplantation tumor sarcoma 180 (S180) and hepatoma 22 (H22) in mice, with inhibition rate 26.8% and 58.4% on S180 and 31.3% and 47.4% on H22, respectively. Cell cycle studies indicated that the proportion of G0/G1 phase was increased at 2.5 mg/L while decreased at 10 mg/L after treatment for 24, 48 h. Whereas S phase was decreased at 2.5-5 mg/L and markedly increased at 10 mg/L after treatment for 48 h. After treatment for 24 h, 10 mg/L NaSeVO also markedly increased S and G2/M phases. Take together, the result clearly showed that NaSeVO markedly increased S and G2/M phases at 10 mg/L. The study of immunocytochemistry showed that the expression bcl-2 is significantly inhibited by 10 mg/L NaSeVO, and bax increased. Morphology observation also revealed typical apoptotic features. NaSeVO also significantly caused the accumulation of $Ca^{2+}$ and $Mg^{2+}$, reactive oxygen species (ROS) and the reduction of pH value and mitochondrial membrane potential in K562 cells as compared with control by confocal laser scanning microscope. These results suggest that NaSeVO has anti-tumor effects and its mechanism is attributed partially to apoptosis induced by the elevation of intracellular $Ca^{2+}$, $Mg^{2+}$ and ROS concentration, and a reduction of pH value and mitochondria membrane potential (MMP).

Processed Panax ginseng, Sun Ginseng, Decreases Oxidative Damage Induced by tert-butyl Hydroperoxide via Regulation of Antioxidant Enzyme and Anti-apoptotic Molecules in HepG2 Cells

  • Lee, Hye-Jin;Kim, Jin-Hee;Lee, Seo-Young;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • 제36권3호
    • /
    • pp.248-255
    • /
    • 2012
  • Potential antioxidant effect of processed ginseng (sun ginseng, SG) on oxidative stress generated by tert-butyl hydroperoxide (t-BHP) was investigated in HepG2 cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and lactate dehydrogenase (LDH) leakage test demonstrated that SG dose-dependently prevents a loss of cell viability against t-BHP-induced oxidative stress. Also, SG treatment dose-dependently relieved the increment of activities of hepatic enzymes, such as aspartate aminotrasferase and alanine aminotransferase, and lipid peroxidation mediated by t-BHP treatment in HepG2 cells. SG increased the gene expression of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. However, high dose of SG treatment caused decrease in mRNA level of glutathione peroxidase as compared to low dosage of SG-treated cells. The gene expression of glutathione reductase was found to be slightly increased by SG treatment. In addition, SG extract attributed its hepaprotective effect by inducing the mRNA level of bcl-2 and bcl-xL but reducing that of bax. But, the gene expression of bad showed no significant change in SG-treated HepG2 cells. These findings suggest that SG has hepatoprotective effect by showing reduction of LDH release, activities of hepatic enzymes and lipid peroxidation and regulating the gene expression of antioxidant enzymes and apoptosis-related molecules against oxdative stress caused by t-BHP in HepG2 cells.

Alpha-lipoic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced cell injury by inhibiting autophagy and apoptosis

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Lim, HyangI;Park, Jong-Hyun;Yang, Kwang Yeol;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Chun, Hong Sung;Lee, Dong-Seol;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • 제46권1호
    • /
    • pp.15-22
    • /
    • 2021
  • Alpha-lipoic acid (ALA) is a naturally occurring antioxidant and has been previously used to treat diabetes and cardiovascular disease. However, the autophagy effects of ALA against oxidative stress-induced dopaminergic neuronal cell injury remain unclear. The aim of this study was to investigate the role of ALA in autophagy and apoptosis against oxidative stress in the SH-SY5Y human dopaminergic neuronal cell line. We examined SH-SY5Y phenotypes using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (cell viability/proliferation), 4′,6-diamidino-2-phenylindole dihydrochloride nuclear staining, Live/Dead cell assay, cellular reactive oxygen species (ROS) assay, immunoblotting, and immunocytochemistry. Our data showed ALA attenuated hydrogen peroxide (H2O2)-induced ROS generation and cell death. ALA effectively suppressed Bax up-regulation and Bcl-2 and Bcl-xL down-regulation. Furthermore, ALA increased the expression of the antioxidant enzyme, heme oxygenase-1. Moreover, the expression of Beclin-1 and LC-3 autophagy biomarkers was decreased by ALA in our cell model. Combined, these data suggest ALA protects human dopaminergic neuronal cells against H2O2-induced cell injury by inhibiting autophagy and apoptosis.

Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells

  • Wang, Xu De;Su, Guang Yue;Zhao, Chen;Qu, Fan Zhi;Wang, Peng;Zhao, Yu Qing
    • Journal of Ginseng Research
    • /
    • 제42권2호
    • /
    • pp.133-143
    • /
    • 2018
  • Background: AD-2 (20(R)-dammarane-3b, 12b, 20, 25-tetrol; 25-OH-PPD) is a ginsenoside and isolated from Panax ginseng, showing anticancer activity against extensive human cancer cell lines. In this study, effects and mechanisms of 1C ((20R)-3b-O-(L-alanyl)-dammarane-12b, 20, 25-triol), a modified version of AD-2, were evaluated for its development as a novel anticancer drug. Methods: MTT assay was performed to evaluate cell cytotoxic activity. Cell cycle and levels of reactive oxygen species (ROS) were determined using flow cytometry analysis. Western blotting was employed to analyze signaling pathways. Results: 1C concentration-dependently reduces prostate cancer cell viability without affecting normal human gastric epithelial cell line-1 viability. In LNCaP prostate cancer cells, 1C triggered apoptosis via Bcl-2 family-mediated mitochondria pathway, downregulated expression of mouse double minute 2, upregulated expression of p53 and stimulated ROS production. ROS scavenger, N-acetylcysteine, can attenuate 1C-induced apoptosis. 1C also inhibited the proliferation of LNCaP cells through inhibition on $Wnt/{\beta}-catenin$ signaling pathway. Conclusion: 1C shows obvious anticancer activity based on inducing cell apoptosis by Bcl-2 family-mediated mitochondria pathway and ROS production, inhibiting $Wnt/{\beta}-catenin$ signaling pathway. These findings demonstrate that 1C may provide leads as a potential agent for cancer therapy.

폐쇄성과 비폐쇄성 무 정자증 환자의 고환 내 세포 자연사 관련 인자들의 발현 변화와 SELDI-TOF Mass Spectrometry를 이용한 단백질 발현 분석 (Differential Expressions of Apoptosis Regulators and Protein Profiling by SELDI-TOF Mass Spectrometry in Human Testis with Obstructive and Non-obstructive Azoospermia)

  • 김슬기;김호승;이호준;박용석;서주태;윤용달
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제32권2호
    • /
    • pp.121-132
    • /
    • 2005
  • 연구목적: 본 연구에서는 비폐쇄성 무정자증 환자에서 나타나는 정자형성과정의 이상과 고환세포의 세포자연사와의 연관관계 여부를 확인하였다. 또한 SELDI-TOF MS 분석을 통하여 고환 내 단백질 발현 양상을 확인하고, 질환에 따른 효과적인 biomarker 개발 가능성 여부를 확인하였다. 재료 및 방법: RT-PCR 및 면역조직화학법을 사용하여 고환에서의 Fas, FasL, Bcl-2, Bax와 Caspase-3의 발현 양상을 확인하고, in situ DNA 3'-end-labelling 방법으로 고환세포의 세포자연사 양상을 확인하였다. SELDI-TOF MS 분석법에 의한 고환의 병리학적 소견에 따른 단백질 발현 변화는 소수성 칩 ($H_4$)을 사용하여 분자량 10~100 kDa 범위 내에서 분석하였다. 결 과: 정상적인 정자형성과정을 보이는 폐쇄성 무정자증 환자의 고환에 비해 지주세포 증후군 (Sertoli cell only syndrome)과 성숙정지 (maturation arrest)를 보이는 고환 내 생식세포와 지주세포에서 세포자연사가 현저하게 증가한 것을 확인할 수 있었다. 세포자연사 관련인자들의 발현 양상을 확인한 결과, 지주세포 증후군과 성숙정지 환자군에서 Fas와 FasL mRNA의 발현이 증가하였으나, bcl-2, bax와 caspase-3 mRNA 발현의 경우에는 두 질환 모두에서 유의한 차이를 확인할 수 없었다. FasL 단백질 발현의 경우, 세포자연사의 증가가 관찰되었던 지주세포 증후군과 성숙정지를 보이는 환자의 간질세포와 지주세포에서 증가하는 양상을 나타내었다. SELDI-TOF MS 분석 결과에서 폐쇄성 무정자증 환자군에 비해 전체적인 단백질 발현양이 지주세포 증후군과 성숙정지 환자의 고환에서 감소하는 양상을 보였으며, 특히, 16.730 kDa 단백질의 현저한 감소를 확인할 수 있었다. 결 론: 본 연구결과를 통해 비폐쇄성 무정자증 환자에서 나타나는 정자형성과정의 장애는 생식세포의 비정상적인 세포자연사와 연관되어 있으며, 고환 내 Fas와 FasL의 비정상적인 발현이 주된 원인인 것을 확인할 수 있었다. 또한, SELDI-TOF MS 분석법을 통한 단백질 발현 양상의 연구는 무정자증 환자에서의 다양한 병리학적 소견을 쉽게 파악할 수 있는 biomarker 발굴뿐만 아니라 질환의 원인규명을 위한 연구에도 유용하게 이용될 수 있을 것으로 사료된다.

마우스 비장세포의 증식과 생존율에 대한 BCG-CWS의 면역자극 효과 (Immunostimulatory effects of BCG-CWS on the proliferation and viability of mouse spleen cells)

  • 이제욱;고은주;주홍구
    • 대한수의학회지
    • /
    • 제52권2호
    • /
    • pp.89-97
    • /
    • 2012
  • Mycobacterial cell-wall skeleton (CWS) is an immunoactive and biodegradable particulate adjuvant and has been tried to use for immunotherapy. The CWS of Mycobacterium bovis bacillus Calmette-Guerin (BCG-CWS) was studied as an universal vaccine vehicle for antigen conjugation, to develop potentially effective and safe vaccine. Although a variety of biological activities of BCG-CWS have been studied, the effects of BCG-CWS on spleen cells are not fully elucidated. Using MTT assay and trypan blue exclusion test, we found that BCG-CWS significantly enhanced the viability and proliferation of cells. Multiple clusters, indicating proliferation, were observed in BCG-CWS-treated spleen cells and surface marker staining assay revealed that BCG-CWS promoted the proliferation of $CD19^+$ B lymphocyte rather than $CD4^+$ or $CD8^+$ T lymphocyte. In addition, BCG-CWS up-regulated the expression of anti-apoptotic molecules such as bcl-2, bcl-xL. BCG-CWS increased the surface expression of CD25 and CD69 as well as IL-2 production of spleen cells, suggesting increased activation. Furthermore, BCG-CWS enhanced the antigen-specific cell proliferation and interferon-gamma production of spleen cells. Taken together, these results demonstrate the immunostimulatory effects of BCG-CWS on spleen cells via multiple mechanisms, providing valuable information to broaden the use of BCG-CWS in clinical and research settings.

Apoptotic activity of demethoxycurcumin in MG-63 human osteosarcoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Park, Jong-Hyun;Chun, Hong Sung;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • 제46권1호
    • /
    • pp.23-29
    • /
    • 2021
  • Demethoxycurcumin (DMC), which is a curcuminoid found in turmeric, has anti-proliferative effects on cancer cells. However, the effect of DMC on osteosarcoma has not been established. The aim of this study was to examine the effects of DMC on cell growth and apoptosis induction in MG-63 human osteosarcoma cells. This study was investigated using 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromid assay, Live/Dead cell assay, 4', 6-diamidino-2-phenylindole staining, and immunoblotting in MG-63 cells. DMC induced MG-63 cell death in a dose-dependent manner, with an estimated IC50 value of 54.4 µM. DMC treatment resulted in nuclear condensation in MG-63 cells. DMC-induced apoptosis in MG-63 cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting results showed that Bcl-2 and Bcl-xL were downregulated, while Bax and Bad were upregulated by DMC in MG-63 cells. These results indicated that DMC inhibits cell proliferation and induces apoptotic cell death in MG-63 human osteosarcoma cells via the death receptor-mediated extrinsic apoptotic pathway and mitochondria-mediated intrinsic apoptotic pathway.