• Title/Summary/Keyword: Bcl2-A1

Search Result 853, Processing Time 0.023 seconds

Sanghuangporus sanghuang extract inhibits the proliferation and invasion of lung cancer cells in vitro and in vivo

  • Weike Wang;Jiling Song;Na Lu;Jing Yan;Guanping Chen
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1070-1083
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Sanghuangporus sanghuang (SS) has various medicinal effects, including anti-inflammation and anticancer activities. Despite the extensive research on SS, its molecular mechanisms of action on lung cancer are unclear. This study examined the impact of an SS alcohol extract (SAE) on lung cancer using in vitro and in vivo models. MATERIALS/METHODS: Different concentrations of SAE were used to culture lung cancer cells (A549 and H1650). A cell counting kit-8 assay was used to detect the survival ability of A549 and H1650 cells. A scratch assay and transwell cell invasion assay were used to detect the migration rate and invasive ability of SAE. Western blot analysis was used to detect the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), cyclin D1, cyclin-dependent kinases 4 (CDK4), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3). Lung cancer xenograft mice were used to detect the inhibiting ability of SAE in vivo. Hematoxylin and eosin staining and immunohistochemistry were used to detect the effect of SAE on the structural changes to the tumor and the expression of Bcl-2, Bax, cyclin D1, CDK4, STAT3, and p-STAT3 in lung cancer xenograft mice. RESULTS: SAE could inhibit lung cancer proliferation significantly in vitro and in vivo without cytotoxicity. SAE suppressed the viability, migration, and invasion of lung cancer cells in a dose and time-dependent manner. The SAE treatment significantly decreased the proapoptotic Bcl-2/Bax ratio and the expression of pro-proliferative proteins Cyclin D1 and CDK4 in vitro and in vivo. Furthermore, SAE also inhibited STAT3 expression. CONCLUSIONS: SAE reduced the cell viability and suppressed cell migration and invasion in human lung cancer cells. Moreover, SAE also exhibited anti-proliferation effects in vivo. Therefore, SAE may have benefits in cancer therapy.

Extract of Broussometia kazinoki Induces Apoptosis Through the Mitochondria/Caspase Pathway in A549 Lung Cancer Cells (A549세포에서 닥나무 추출물의 미토콘드리아/Caspase 경로를 통한 Apoptosis 유도작용)

  • Kim, Tae Hyeon;Kim, Dan Hee;Mun, Yeun Ja;Lim, Kyu Sang;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.150-156
    • /
    • 2016
  • Extract of Broussometia kazinoki Rhizodermatis has been traditionally used for geopoong, diuresis, hwalhyeol. In the present study, the apoptotic effect of methanol extract of Broussometia kazinoki (MBK) were investigated. Cell viability of A549 cells was measured by MTT assay. Apoptosis-related protein and MAPK protein levels were measured by Western blot. Chromatin condensation of A549 cells was stained with DAPI. MBK inhibited cell proliferation of A549 cell. Based on DAPI staining, MBK-treated cells manifested nuclear shrinkage, condensation and fragmentation. Treatment of A549 cells with MBK resulted in activation of the caspase-3, -8, -9 and cleavage of poly ADP-ribose polymerase (PARP). In the upstream, MBK increased the expressions Bax and Bak, decreased the expression of Bcl-2, and augmented the Bax/Bcl-2 ratio. MBK-induced apoptosis was accompanied by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK)-1. These results suggest that MBK induced apoptosis in A549 cells through Bcl-2 family protein-mediated mitochondria/caspase-3 dependent pathway. In addition, MBK increased the activation of ASK-1, which are critical upsteam signals for JNK/p38 MAPK activation in A549 cancer cells.

Effects of Bambusae Caulis in Liquamen on the Stress Proteins Induced by Heating in Endothelial Cells (혈관내피세포에 열 충격 부과시 죽력이 stress proteins의 발현에 미치는 영향)

  • Jeon Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.496-499
    • /
    • 2004
  • We have previously observed that Bambusae Caul is in Liquamen (BCL) stimulates the adipose conversion of 3T3-L1 cells and molecular chaperones were involved in the process of the assembly and replacement of laminin subunits in Bovine aortic endothelial cells(BAEC). Endothelial cells are exposed to continuous shear stress due to the blood flow. Heat shock protens(hsp) are a well-known stress response protein, namely, stress proteins. To investigate effects of BCL on the stress proteins induced by heating in endothelial cells, we have analyzed synthetic amounts of stress proteins in sodium dodecyl sulfate gel electrophoresis under reducing conditions. Under the condition of heating stress, BCL inhibited the synthesis of stress proteins in endothelial cells. These results suggest that BCL may have an important role for expression of stress proteins induced by heating in endothelial cells.

Effects of Curcumin on Apoptosis in SW480 Human Colon Cancer Cell Line (Curcumin이 인체대장암세포주인 SW480 cell에서 세포사멸에 미치는 영향)

  • 최옥숙;김우경
    • Journal of Nutrition and Health
    • /
    • v.37 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • Curcumin, a natural compound extracted from rhizomes of Curcuma longa, has been shown to possess potent anti-inflammatory and anti-tumor activity. The mechanism by which curcumin initiates apoptosis remains poorly understood. In this study, we investigated the effects of curcumin on caspase-3 activity and protein expression of procaspase-3, Bcl-2, Bax, total Akt and phosphorylated Akt in SW480 human colon cancer cell. We cultured SW480 cells in the presence of various concentrations (0, 10, 20 or 30 uM) of curcumin. Curcumin inhibited colon cancer cell growth in a dose-dependent manner (p < 0.05). Caspase-3 activity was significantly increased dose-dependently in cells treated with curcumin (p < 0.05), concisely procaspase-3 expression was significantly decreased. Bcl-2 levels were decreased dose-dependently in cells treated with curcumin (p < 0.05), but Ben remained unchanged. In addition, phosphorylated Akt levels and total Akt levels were markedly lower in cells treated with 20 uM of curcumin treatment (p < 0.05), In conclusion, we have shown that curcumin inhibits cell growth and induces apoptosis in SW480 human colon cancer cell lines via Akt signal pathway.

Neuroprotective Effects of Parkin and Bcl-2 against Dieldrin-induced Endoplasmic Reticulum Stress (디엘드린 유도성 소포체 스트레스에서의 parkin과 Bcl-2의 신경보호 효과)

  • Seo, Jeong-Yeon;Kim, Jae-Sung;Kim, Do Kyung;Chun, Hong Sung
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.771-777
    • /
    • 2022
  • Dopaminergic (DA) cell death in Parkinson's disease (PD) has been attributed to multiple, distinct genetic and environmental factors. In rare familial PD loss of parkin function mutations play a key role in nigral DA neuron-specific pathogenesis primarily via endoplasmic reticulum (ER) stress. In more prevalent sporadic PD, environmental exposure to pesticides has a significant epidemiological role. However, it is largely unknown how environmental exposure to xenobiotics is etiologically linked with the known etiology in familial PD. In the present study biochemical evidence for a common pathogenic mechanism between sporadic and familial PD has been identified employing the recently characterized mesencephalic DA cell line, N27-A. Dieldrin, an organochlorine pesticide epidemiologically implicated in sporadic PD, induced the markers of ER stress response such as a chaperone BiP/Grp78, heme oxygenase-1 and especially, parkin. Accordingly, dieldrin activated the ER resident Caspase-12, a mediator of ER stress-specific apoptosis, during cell death of N27-A cells. Of great interest the dieldrin-induced DA neuronal cell death was synergistically rescued by the overexpression of ER resident neuroprotective proteins, parkin and Bcl-2. The present findings implicate that accumulation of ER stress could be one of common pathogenic mechanisms in idiopathic and familial PD, and some ER proteins, such as parkin and Bcl-2 may effectively attenuate ER stress-mediated N27-A DA cell death.

Micromorphometric change of implant surface conditioned with tetracycline-HCI : $FBR^{(R)}$ and CeliNest surface (표면처리 시간에 따른 임프란트 미세구조의 변화 : $FBR^{(R)}$과 CellNest 표면 임프란트)

  • Chang, Dong-Wook;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.717-729
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-BCL on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, double coated $FBR^{(R)}$ surface and oxidized CellNest surface were utilized. Implant surface was rubbed with $50mg/m{\ell}$ tetracycline-BCL solution for ${\frac{1}{2}}$, 1, $1{\frac{1}{2}}$, 2 and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. The double coated $FBR^{(R)}$ surfaces showed fine crystalline structures. The roughness of surfaces conditioned with tetracycline-BCL was lessened relative to the application time. 3. The oxidized CellNest surfaces showed the porous structures. The surface conditioning with tetracycline-BCI influenced on its micro-morphology. In conclusion, the detoxification of the affected implant surface with $50mg/m{\ell}$ tetracycline-BCL should be applied respectively with different time according to various implant surfaces.

Apoptosis Detected by in Situ DNA end-extension in Osteosarcomas - In relation to p53 and Bcl-2 expression -

  • Park, Yong-Koo;Yang, Moon-Ho;Park, Hye-Rim;Kim, Youn-Wha;Lee, Ju-Hie
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.3 no.2
    • /
    • pp.69-79
    • /
    • 1997
  • Objective : The objective of this study was to compare expression of various proto-oncogenes and rates of apoptosis in osteosarcoma patients. Modulation of apoptosis may influence resistance to chemotherapy and therefore affect the outcome of cancer treatment. Osteosarcoma is one of the most fatal malignancies in young adolescents and investigation of the role of apoptotic cell death is warranted in relation to chemotherapy and tumor outcome. Design : The terminal deoxynucleotidyl transferase to exposed 3'-hydroxyl termini of DNA (TUNEL method) staining method has been applied for the in situ detection of DNA double strand breaks. Patients : Thirty-three osteosarcomas in various stages of differentiation from twenty-nine patients were investigated immunohistochemically for p53, Bcl-2 and TUNEL method for apoptosis. Results and conclusion; We have found that higher level of wild type p53 were correlated with enhanced expression of apoptosis. Increased apoptosis rates were found in cases of negative Bcl-2 expression. In the present study, we have concluded that a significant proportion of osteosarcoma, a tumor in which resistance to chemotherapy often occurs, express high levels of p53 and low levels of Bcl-2. Our data provide further evidence for cross-talk between Bcl-2 and p53 and suggests that these genes are important determinants of drug-induced apoptosis.

  • PDF

Obatoclax Regulates the Proliferation and Fusion of Osteoclast Precursors through the Inhibition of ERK Activation by RANKL

  • Oh, Ju Hee;Lee, Jae Yoon;Park, Jin Hyeong;No, Jeong Hyeon;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • Obatoclax, a pan-Bcl2 inhibitor, shows antitumor activities in various solid malignancies. Bcl2-deficient mice have shown the importance of Bcl2 in osteoclasts, as the bone mass of the mice was increased by the induced apoptosis of osteoclasts. Despite the importance of Bcl2, the effects of obatoclax on the proliferation and differentiation of osteoclast precursors have not been studied extensively. Here, we describe the anti-proliferative effects of obatoclax on osteoclast precursors and its negative role on fusion of the cells. Stimulation with low doses of obatoclax significantly suppressed the proliferation of osteoclast precursors in a dose-dependent manner while the apoptosis was markedly increased. Its stimulation was sufficient to block the activation of ERK MAP kinase by RANKL. The same was true when PD98059, an ERK inhibitor, was administered to osteoclast precursors. The activation of JNK1/2 and p38 MAP kinase, necessary for osteoclast differentiation, by RANKL was not affected by obatoclax. Interestingly, whereas the number of TRAP-positive mononuclear cells was increased by both obatoclax and PD98059, fused, multinucleated cells larger than $100{\pm}m$ in diameter containing more than 20 nuclei were completely reduced. Consistently, obatoclax failed to regulate the expression of osteoclast marker genes, including c-Fos, TRAP, RANK and CtsK. Instead, the expression of DC-STAMP and Atp6v0d2, genes that regulate osteoclast fusion, by RANKL was significantly abrogated by both obatoclax and PD98059. Taken together, these results suggest that obatoclax down-regulates the proliferation and fusion of osteoclast precursors through the inhibition of the ERK1/2 MAP kinase pathway.

Induction of Apoptotic Cell Death and Depression of Bcl-2 Protein Levels by Trans-10,cis-12 Conjugated Linoleic Acid in Human Prostate Cancer (인간 전립선 암세포인 TSU-Pr1에서 trans-10,cis-12 Conjugated Linoleic Acid에 의한 Apoptosis 유발과 Bcl-2 단백질의 발현억제)

  • 오윤신;김은지;이상곤;정차권;강일준;신현경;윤정한
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.1126-1133
    • /
    • 2002
  • Conjugated linoleic acid (CLA) is a collective term for a class of positional and geometric conjugated dienoic isomers of linoleic acid (LA) and has anti-cancer activity in experimental animals. We have previously observed that an isomeric mixture of CLA and trans-10,cis-12 (t10c12) inhibited cell growth in a dose-dependent manner whereas LA and cis-9,trans-11 (c9t11) had no effect. The present study examined whether the CLA mixture and t10c12 induce apoptotic cell death. TSU-Prl cells were incubated for three days in serum-free medium in the absence or presence of individual fatty acids, and the DNA fragmentation assay was performed. Cells treated with the CLA mixture or t10c12 produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. By contrast, LA and c9t11 had no effect. Western immunoblot analysis of total lysates revealed that t10c12 reduced anti-apoptotic, 26 kDa, Bcl-2 protein levels by 49$\pm$8% compared with controls, whereas this CLA isomer did not alter pro-apoptotic,21 kDa, Bax protein levels. These results suggest that growth inhibitory effect of the t10c12 CLA isomer may, at least in part, be attributed to Increased apoptotic death in TSU-Prl cells.

The Regulation of p27Kip-1 and Bcl2 Expression Is Involved in the Decrease of Osteoclast Proliferation by A2B Adenosine Receptor Stimulation

  • Kim, Hong Sung;Lee, Na Kyung
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.327-332
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be a regulator of bone homeostasis, but the regulatory mechanism of A2BAR on the osteoclast proliferation are poorly explored. Recently, we have shown that stimulation with BAY 60-6583, a specific agonist of A2BAR, significantly reduced macrophage-colony stimulating factor (M-CSF)-induced osteoclast proliferation by inducing cell cycle arrest at G1 phase and increasing the apoptosis of osteoclasts. The objective of this study was to investigate the regulatory mechanisms of cell cycle and apoptosis by A2BAR stimulation. The expression of A2BAR and M-CSF receptor, c-Fms, was not changed by A2BAR stimulation whereas M-CSF effectively induced c-Fms expression during osteoclast proliferation. Interestingly, A2BAR stimulation remarkably increased the expression of $p27^{Kip-1}$, a cell cycle inhibitor, but the expression of Cyclin D1 and cdk4 was not affected. In addition, while BAY 60-6583 treatment reduced the expression of Bcl2, an anti-apoptotic oncogene, it failed to regulate the expression of Bax, a pro-apoptotic marker. Taken together, these results imply that the increase of $p27^{Kip-1}$ inducing cell cycle arrest at G1 phase and the decrease of Bcl2 inducing anti-apoptotic response by A2BAR stimulation contribute to the down-regulation of osteoclast proliferation.