• 제목/요약/키워드: Bcl-2 MAPK pathway

검색결과 40건 처리시간 0.028초

D-Limonene mitigate myocardial injury in rats through MAPK/ERK/NF-κB pathway inhibition

  • Younis, Nancy Safwat
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권3호
    • /
    • pp.259-266
    • /
    • 2020
  • Cardiovascular diseases are the primary reason of mortality, among which myocardial infarction (MI) is the most dominant and prevalent. This study was considered to examine D-Limonene protective action against isoproterenol (ISO) induced MI. Wister male rats were dispersed into four groups. Normal and D-Limonene control group in which rats administered saline or D-Limonene. ISO control animals were administered saline for 21 days then challenged with ISO (85 mg/kg, subcutaneously) on 20th and 21st day for MI induction. D-Limonene pretreated group in which animals were pretreated with D-Limonene 50 mg/kg orally for 21 days then administered ISO on 20th and 21st day. MI prompted variations were assessed by myocardial infarction area determination, blood pressure (BP) alterations, cardiac injury biomarkers and inflammatory mediators measurements. For more depth investigation, both the apoptotic status was evaluated via measuring mRNA expression of Bcl-2 and Bax as well as mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signal transduction were investigated via Western blotting. MI group revealed significant infarcted area, blood pressure alterations, myocardial injury enzymes intensification together with inflammatory cytokines amplification. MI was associated with activation of MAPK-ERK signal pathway and apoptotic status within the myocardium. On the other hand, pretreated with D-Limonene demonstrated deterred infracted area, reduced myocardial enzymes, improved BP indices, lessened inflammatory levels. Furthermore, D-Limonene pretreatment caused a decline in MAPK proteins pathway and Bax relative mRNA expression, while intensifying Bcl-2 mRNA expression promoting that D-Limonene may constrain MI induced myocardial apoptosis. D-Limonene mitigated MI injury through MAPK/NF-κB pathway inhibition and anti-apoptotic effect.

Molecular Effects of Genistein on Proliferation and Apoptosis of MCF-7 Cell Line

  • Shin, Hye-Jin;Oh, Young-Jin;Hwang, Seung-Yong;Yoo, Young-Sook
    • Molecular & Cellular Toxicology
    • /
    • 제2권1호
    • /
    • pp.15-20
    • /
    • 2006
  • Genistein is a potent, plant-derived isoflavone that displays estrogenic activity at low concentrations but inhibits proliferation at high amounts. However, the molecular mechanism of genistein is not completely understood. In the present study, the biphasic effects (estrogenic and antiestrogenic activity) of genistein on the growth of MCF-7 cells were identified. Genistein within a low range of concentration, $1-10\;{\mu}M$, stimulated proliferation, while $50-100\;{\mu}M$ caused apoptotic cell death. Additionally, genistein at a low concentration induced estrogen receptor (ER)-mediated gene expression and ER phosphorylation. When pre-treated with PD98059, an MEK inhibitor, ER-mediated gene expression and ER phosphorylation by genistein were noticeably increased. However, the increased gene expression and phosphorylation did not enhance cell proliferation. Moreover, it was observed that ER-mediated signaling performs an important role in the MAPK pathway. The proliferation and apoptosis in genistein-treated MCF-7 cells were partially dependent on the Bcl-2 level. The addition of IC1 182, 780, an estrogen receptor antagonist, inhibited Bcl-2 expression induced by genistein. This study suggests that there is a close relationship between Bcl-2 and the ER signaling pathways in MCF-7 cells.

A549세포에서 닥나무 추출물의 미토콘드리아/Caspase 경로를 통한 Apoptosis 유도작용 (Extract of Broussometia kazinoki Induces Apoptosis Through the Mitochondria/Caspase Pathway in A549 Lung Cancer Cells)

  • 김태현;김단희;문연자;임규상;우원홍
    • 동의생리병리학회지
    • /
    • 제30권3호
    • /
    • pp.150-156
    • /
    • 2016
  • Extract of Broussometia kazinoki Rhizodermatis has been traditionally used for geopoong, diuresis, hwalhyeol. In the present study, the apoptotic effect of methanol extract of Broussometia kazinoki (MBK) were investigated. Cell viability of A549 cells was measured by MTT assay. Apoptosis-related protein and MAPK protein levels were measured by Western blot. Chromatin condensation of A549 cells was stained with DAPI. MBK inhibited cell proliferation of A549 cell. Based on DAPI staining, MBK-treated cells manifested nuclear shrinkage, condensation and fragmentation. Treatment of A549 cells with MBK resulted in activation of the caspase-3, -8, -9 and cleavage of poly ADP-ribose polymerase (PARP). In the upstream, MBK increased the expressions Bax and Bak, decreased the expression of Bcl-2, and augmented the Bax/Bcl-2 ratio. MBK-induced apoptosis was accompanied by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK)-1. These results suggest that MBK induced apoptosis in A549 cells through Bcl-2 family protein-mediated mitochondria/caspase-3 dependent pathway. In addition, MBK increased the activation of ASK-1, which are critical upsteam signals for JNK/p38 MAPK activation in A549 cancer cells.

Radix Tetrastigma Hemsleyani Flavone Induces Apoptosis in Human Lung Carcinoma A549 Cells by Modulating the MAPK Pathway

  • Zhong, Liang-Rui;Chen, Xian;Wei, Ke-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5983-5987
    • /
    • 2013
  • Radix Tetrastigma Hemsleyani Flavone (RTHF) is widely used as a traditional herb for its detoxification and anti-inflammation activity. Recently, several studies have shown that RTHF can inhibit growth and induce apoptosis in human cancer cell lines. However, the mechanisms are not completely understood yet. In this study we investigated the potential effects of RTHF on growth and apoptosis in human lung adenocarcinoma A549 cells as well as its mechanisms. A549 cells were treated with RTHF at various concentrations for different times. In vitro the MTT assay showed that RTHF had obvious anti-proliferation effects on A549 cells in a dose- and time-dependent manner. Cell morphological changes observed by inverted microscope and Hoechst33258 methods were compared with apoptotic changes observed by fluorescence microscope. Cell apoptosis inspected by flow cytometry showed significant increase in the treatment group over the control group (P<0.01). Expression of apoptosis related Bax/Bcl-2, caspases and MAPK pathway proteins were detected by Western blotting. The results showed that RTHF up-regulated the Bax/Bcl-2 ratio and cle-caspase3/9, cle-PARP expression in a dose-dependent manner. Expression of p-p38 increased, p-ERK decreased significantly and that of p-JNK was little changed in the RTHF group when compared with the control group. These results suggest that RTHF might exert anti-growth and apoptosis activity against lung cancer A549 cells through activation of caspases and Bcl-2 family proteins and the MAPK pathway, therefore presenting as a promising therapeutic agent for the treatment of lung cancer.

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • 제34권1호
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

Emodin Inhibits Breast Cancer Cell Proliferation through the ERα-MAPK/Akt-Cyclin D1/Bcl-2 Signaling Pathway

  • Sui, Jia-Qi;Xie, Kun-Peng;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6247-6251
    • /
    • 2014
  • Background: The aim of the present study was to investigate the involvement of emodin on the growth of human breast cancer MCF-7 and MDA-MB-231 cells and the estrogen (E2) signal pathway in vitro. Materials and Methods: MTT assays were used to detect the effects of emodin on E2 induced proliferation of MCF-7 and MDA-MB-231 cells. Flow cytometry (FCM) was applied to determine the effect of emodin on E2-induced apoptosis of MCF-7 cells. Western blotting allowed detection of the effects of emodin on the expression of estrogen receptor ${\alpha}$, cyclin D1 and B-cell lymphoma-2 (Bcl-2), mitogen-activated protein kinases (MAPK) and phosphatidylinostiol 3-kinases (PI3K). Luciferase assays were emplyed to assess transcriptional activity of $ER{\alpha}$. Results: Emodin could inhibit E2-induced MCF-7 cell proliferation and anti-apoptosis effects, and arrest the cell cycle in G0/G1 phase, further blocking the effect of E2 on expression and transcriptional activity of $ER{\alpha}$. Moreover, Emodin influenced the ER ${\alpha}$ genomic pathway via downregulation of cyclin D1 and Bcl-2 protein expression, and influenced the non-genomic pathway via decreased PI3K/Akt protein expression. Conclusions: These findings indicate that emodin exerts inhibitory effects on MCF-7 cell proliferation via inhibiting both non-genomic and genomic pathways.

목향에탄올추출물의 ROS-MAPKs 경로를 통한 세포사멸 유도 (Ethanol Extract of Saussurea lappa Root Induces Apoptosis through an ROS-MAPKs-Linked Cascade)

  • 김대성;이성진;이장천;우원홍;임규상;문연자
    • 약학회지
    • /
    • 제56권3호
    • /
    • pp.173-179
    • /
    • 2012
  • Saussurea lappa (SL) and major compounds, sesquiterpene lactones, have been suggested to possess various biological effects, including anti-tumor, anti-ulcer, anti-inflammatory, anti-viral and cardiotonic activities. Therefore, the ethanol extract of Saussurea lappa root (ESL) is studied for the mechanism of its action in apoptotic pathway. ESL-treated cells manifested nuclear condensation, and fragmentation. ESL also triggered the mitochondrial apoptotic pathway, as indicated by a change in Bax/Bcl2 ratio and caspase-9/-3 activation. ESL induced p38 MAPK/JNK, p53, and ASK1 phosphorylation. ROS scavenger reversed ESL-induced apoptotic cell death via inhibition of caspase-3 and p38 MAPK/JNK phosphorylation. These results suggest that ESL induced apoptosis in HepG2 cells through the ROS-p38/JNK pathway.

Autocrine prostaglandin E2 signaling promotes promonocytic leukemia cell survival via COX-2 expression and MAPK pathway

  • Shehzad, Adeeb;Lee, Jaetae;Lee, Young Sup
    • BMB Reports
    • /
    • 제48권2호
    • /
    • pp.109-114
    • /
    • 2015
  • The COX-2/$PGE_2$ pathway has been implicated in the occurrence and progression of cancer. The underlying mechanisms facilitating the production of COX-2 and its mediator, $PGE_2$, in cancer survival remain unknown. Herein, we investigated $PGE_2$-induced COX-2 expression and signaling in HL-60 cells following menadione treatment. Treatment with $PGE_2$ activated anti-apoptotic proteins such as Bcl-2 and Bcl-xL while reducing pro-apoptotic proteins, thereby enhancing cell survival. $PGE_2$ not only induced COX-2 expression, but also prevented casapse-3, PARP, and lamin B cleavage. Silencing and inhibition of COX-2 with siRNA transfection or treatment with indomethacin led to a pronounced reduction of the extracellular levels of $PGE_2$, and restored the menadione- induced cell death. In addition, pretreatment of cells with the MEK inhibitor PD98059 and the PKA inhibitor H89 abrogated the $PGE_2$-induced expression of COX-2, suggesting involvement of the MAPK and PKA pathways. These results demonstrate that $PGE_2$ signaling acts in an autocrine manner, and specific inhibition of $PGE_2$ will provide a novel approach for the treatment of leukemia.

인체간암세포에서 genistein의 TRAIL에 의한 apoptosis 유도 상승효과에서 미치는 p38 MAPK signaling pathway의 영향 (Enhancement of TRAIL-Mediated Apoptosis by Genistein in Human Hepatocellular Carcinoma Hep3B Cells: Roles of p38 MAPK Signaling Pathway)

  • 김성윤;박철;박상은;홍상훈;최영현
    • 생명과학회지
    • /
    • 제21권11호
    • /
    • pp.1549-1557
    • /
    • 2011
  • TRAIL은 다양한 암세포에서 apoptosis를 유발하는 것으로 알려져 있으나 간암세포를 포함한 일부 암세포에서 TRAIL 저항성이 획득된 것으로 보고되어지고 있다. 대두의 대표적인 생리활성 물질인 isoflavonoid계열 genistein은 이미 많은 암세포에서 apoptotic 효능을 가진 것으로 알려져 있으나 TRAIL에 의한 apoptosis 유도에 미치는 영향과 기전에 대한 연구는 여전히 미비한 실정이다. 본 연구에서는 TRAIL 저항성을 가진 Hep3B 간암세포에서 TRAIL에 의한 apoptosis 유도를 genistein이 더욱 상승시킬 수 있음을 보고하고자 한다. 본 연구의 결과에 의하면, Hep3B 세포에 세포독성을 보이지 않는 범위의 genistein에 의한 TRAIL 유도 apoptosis 상승효과는 미토콘드리아의 기능 손상과 연관성이 있었다. 또한 genistein과 TRAIL 복합처리에 의한 apoptosis 유도는 p38 MAPK 활성 저하로 더욱 상승하였으며, 이는 Bid의 truncation 증가, pro-apoptotic 단백질인 Bax의 발현 증가와 anti-apoptotic Bcl-2의 발현 감소 및 미토콘드리아에서 세포질로의 cytochrome c 유출의 증가와 연관성이 있었다. 또한 p38 MAPK 억제제는 genistein 및 TRAIL 복합처리에 의한 caspase의 활성 증가와 PARP 단백질의 단편화를 촉진시켰으며, 이는 미토콘드리아의 기능적 손상 증가에 의한 것임을 알 수 있었다. 따라서 본 연구의 결과는 genistein이 TRAIL에 의한 apoptosis 유도를 효과적으로 증가시킬 수 있으며, 이러한 과정이 p38 MAPK 의존적으로 이루어짐을 알 수 있었다.

Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway

  • Che, Nan;Ma, Yijie;Xin, Yinhu
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.272-278
    • /
    • 2017
  • Fucoidan has been reported to exhibit various beneficial activities ranging from to antivirus and anticancer properties. However, little information is available about the effects of fucoidan on cerebral ischemia-reperfusion injury (IRI). Our study aimed to explore the effects of fucoidan on cerebral IRI, as well as the underlying mechanisms. Sprague-Dawley (SD) rats were randomly subjected to four groups: Sham, IRI+saline (IRI+S), IRI+80 mg/kg fucoidan (IRI+F80), and IRI+160 mg/kg fucoidan (IRI+F160). Fucoidan (80 mg/kg or 160 mg/kg) was intraperitoneally injected from 7 days before the rats were induced to cerebral IRI model with middle cerebral artery occlusion (MCAO) method. At 24 h after reperfusion, neurological deficits and the total infarct volume were determined. The levels of inflammation-associated cytokines (interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and tumor necrosis factor (TNF)-${\alpha}$), oxidative stress-related proteins (malondialdehyde (MDA) and superoxide dismutase (SOD)) in the ischemic brain were measured by enzyme-linked immunosorbent assay (ELISA). Besides, the levels of apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2) and mitogen-activated protein kinase (MAPK) pathway (phosphorylation-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK), and p-p38) were measured. Results showed that administration of fucoidan significantly reduced the neurological deficits and infarct volume compared to the IRI+S group in a dose-dependent manner. Also, fucoidan statistically decreased the levels of inflammation-associated cytokines, and oxidative stress-related proteins, inhibited apoptosis, and suppressed the MAPK pathway. So, Fucoidan plays a protective role in cerebral IRI might be by inhibition of MAPK pathway.