• Title/Summary/Keyword: Bcl I

Search Result 182, Processing Time 0.03 seconds

Sevoflurane Postconditioning Reduces Hypoxia/Reoxygenation Injury in Cardiomyocytes via Upregulation of Heat Shock Protein 70

  • Zhang, Jun;Wang, Haiyan;Sun, Xizhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1069-1078
    • /
    • 2021
  • Sevoflurane postconditioning (SPostC) has been proved effective in cardioprotection against myocardial ischemia/reperfusion injury. It was also reported that heat shock protein 70 (HSP70) could be induced by sevoflurane, which played a crucial role in hypoxic/reoxygenation (HR) injury of cardiomyocytes. However, the mechanism by which sevoflurane protects cardiomyocytes via HSP70 is still not understood. Here, we aimed to investigate the related mechanisms of SPostC inducing HSP70 expression to reduce the HR injury of cardiomyocytes. After the HR cardiomyocytes model was established, the cells transfected with siRNA for HSP70 (siHSP70) or not were treated with sevoflurane during reoxygenation. The lactate dehydrogenase (LDH) level was detected by colorimetry while cell viability and apoptosis were detected by MTT and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect HSP70, apoptosis-, cell cycle-associated factors, iNOS, and Cox-2 expressions. Enzyme-linked immuno sorbent assay (ELISA) was used to measure malondialdehyde (MDA) and superoxide dismutase (SOD). SPostC decreased apoptosis, cell injury, oxidative stress and inflammation and increased viability of HR-induced cardiomyocytes. In addition, SPostC downregulated Bax and cleaved caspase-3 levels, while SPostC upregulated Bcl-2, CDK-4, Cyclin D1, and HSP70 levels. SiHSP70 had the opposite effect that SPostC had on HR-induced cardiomyocytes. Moreover, siHSP70 further reversed the effect of SPostC on apoptosis, cell injury, oxidative stress, inflammation, viability and the expressions of HSP70, apoptosis-, and cell cycle-associated factors in HR-induced cardiomyocytes. In conclusion, this study demonstrates that SPostC can reduce the HR injury of cardiomyocytes by inducing HSP70 expression.

Ginsenoside compound K reduces the progression of Huntington's disease via the inhibition of oxidative stress and overactivation of the ATM/AMPK pathway

  • Hua, Kuo-Feng;Chao, A-Ching;Lin, Ting-Yu;Chen, Wan-Tze;Lee, Yu-Chieh;Hsu, Wan-Han;Lee, Sheau-Long;Wang, Hsin-Min;Yang, Ding-I.;Ju, Tz-Chuen
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.572-584
    • /
    • 2022
  • Background: Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of trinucleotide CAG repeat in the Huntingtin (Htt) gene. The major pathogenic pathways underlying HD involve the impairment of cellular energy homeostasis and DNA damage in the brain. The protein kinase ataxia-telangiectasia mutated (ATM) is an important regulator of the DNA damage response. ATM is involved in the phosphorylation of AMP-activated protein kinase (AMPK), suggesting that AMPK plays a critical role in response to DNA damage. Herein, we demonstrated that expression of polyQ-expanded mutant Htt (mHtt) enhanced the phosphorylation of ATM. Ginsenoside is the main and most effective component of Panax ginseng. However, the protective effect of a ginsenoside (compound K, CK) in HD remains unclear and warrants further investigation. Methods: This study used the R6/2 transgenic mouse model of HD and performed behavioral tests, survival rate, histological analyses, and immunoblot assays. Results: The systematic administration of CK into R6/2 mice suppressed the activation of ATM/AMPK and reduced neuronal toxicity and mHTT aggregation. Most importantly, CK increased neuronal density and lifespan and improved motor dysfunction in R6/2 mice. Conversely, CK enhanced the expression of Bcl2 protected striatal cells from the toxicity induced by the overactivation of mHtt and AMPK. Conclusions: Thus, the oral administration of CK reduced the disease progression and markedly enhanced lifespan in the transgenic mouse model (R6/2) of HD.

Apoptosis and autophagy of muscle cell during pork postmortem aging

  • Chunmei Li;Xialian Yin;Panpan Xue;Feng Wang;Ruilong Song;Qi Song;Jiamin Su;Haifeng Zhang
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.284-294
    • /
    • 2024
  • Objective: Pork is an important source of animal protein in many countries. Subtle physiochemical changes occur during pork postmortem aging. The changes of apoptosis and autophagy in pork at 6 h to 72 h after slaughter were studied to provide evidence for pork quality. Methods: In this article, morphological changes of postmortem pork was observed through Hematoxylin-eosin staining, apoptotic nuclei were observed by TdT-mediated dUTP nick end labeling assay, protein related to apoptosis and autophagy expressions were tested by western blot and LC3 level were expressed according to immunofluorescence assay. Results: In this study, we found the occurrence of apoptosis in postmortem pork, and the process was characterized by nucleus condensation and fragmentation, formation of apoptotic bodies, increase in apoptosis-related Bax/Bcl-2 levels, and activation of caspases. Autophagy reached its peak between 24 and 48 h after slaughter, accompanied by the formation of autophagosomes on the cell membrane and expression of autophagy-related proteins beclin-1, P62, LC3-I, LC3-II, and ATG5. Conclusion: Obvious apoptosis was observed at 12 h and autophagy reached its peak at 48 h. The present work provides the evidence for the occurrence of apoptosis and autophagy during postmortem aging of pork. In conclusion, the apoptosis and autophagy of muscle cells discovered in this study have important implications for pork in the meat industry.

Bisphosphonate's effect on the tongue in adult male albino rats and the possible protective role of rutin: light and scanning electron microscopic study

  • Dalia El-sayed El-ghazouly;Rania Ibrahim Yassien
    • Anatomy and Cell Biology
    • /
    • v.57 no.1
    • /
    • pp.129-142
    • /
    • 2024
  • Alendronate sodium (ALS) is a nitrogen-containing bisphosphonate used for the treatment of different bone disorders. However, its adverse effect on oral soft tissue has been detected. Rutin (RUT) is natural flavonoid with antioxidant and anti-inflammatory properties. This work aimed to investigate the possible effect of ALS on the tongue of adult male albino rats and to evaluate the possible protective role of RUT. Forty adult male albino rats were equally divided into four groups: group I (control), group II (RUT): Received RUT 50 mg/kg, group III (ALS): Received ALS 1 mg/kg, group IV (ALS+RUT):(ALS+RUT): Received ALS and RUT with the same doses as pervious groups. The drugs were given once daily for 5 weeks. Tongue specimens were taken and processed for light and scanning electron microscopic inspection. ALS treated group revealed structural changes in the tongue in the form of decrease in the height of the filiform papillae with blunt ends, marked atrophy in some papillae with areas of focal loss, loss of some epithelial cells, pyknotic nuclei and cytoplasmic vacuoles in some epithelial cells. The lamina propria showed inflammatory cellular infiltration with congested blood vessels. Statistically, there were highly significant decrease in the number of proliferating cell nuclear antigen immunopositive cells, area percentage of Bcl-2 immunoexpression and highly significant increase in the collagen content compared to control group. Administration of RUT with ALS minimizes these changes. RUT protected the rat tongue against the histological and immunohistochemical changes induced by ALS through its antioxidant and anti-inflammatory properties.

LncRNA PART1 Attenuates Myocardial Ischemia-Reperfusion Injury by Regulating TFAP2C/DUSP5 Axis via miR-302a-3p

  • Min Zeng;Xin Wei;Jinchao Zhou;Siqi Luo
    • Korean Circulation Journal
    • /
    • v.54 no.5
    • /
    • pp.233-252
    • /
    • 2024
  • Background and Objectives: Myocardial ischemia-reperfusion injury (MIRI) refers to the damage of cardiac function caused by restoration of blood flow perfusion in ischemic myocardium. However, long non-coding RNA prostate androgen regulated transcript 1 (PART1)'s role in MIRI remain unclear. Methods: Immunofluorescence detected LC3 expression. Intermolecular relationships were verified by dual luciferase reporter assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry and transferase-mediated dUTP nick-end labeling (TUNEL) assays analyzed cell viability and apoptosis. The release of lactate dehydrogenase was tested via enzyme-linked immunosorbent assay (ELISA). Left anterior descending coronary artery surgery induced a MIRI mouse model. Infarct area was detected by 2,3,5-triphenyltetrazolium chloride staining. Hematoxylin and eosin staining examined myocardial injury. ELISA evaluated myocardial marker (creatine kinase MB) level. Results: PART1 was decreased in hypoxia/reoxygenation (H/R) induced AC16 cells and MIRI mice. PART1 upregulation attenuated the increased levels of Bax, beclin-1 and the ratio of LC3II/I, and enhanced the decrease of Bcl-2 and p62 expression in H/R-treated cells. PART1 upregulation alleviated H/R-triggered autophagy and apoptosis via miR-302a-3p. Mechanically, PART1 targeted miR-302a-3p to upregulate transcription factor activating enhancer-binding protein 2C (TFAP2C). TFAP2C silencing reversed the protected effects of miR-302a-3p inhibitor on H/R treated AC16 cells. We further established TFAP2C combined to dual-specificity phosphatase 5 (DUSP5) promoter and activated DUSP5. TFAP2C upregulation suppressed H/R-stimulated autophagy and apoptosis through upregulating DUSP5. Overexpressed PART1 reduced myocardial infarction area and attenuated MIRI in mice. Conclusion: PART1 improved the autophagy and apoptosis in H/R-exposed AC16 cells through miR-302a-3p/TFAP2C/DUSP5 axis, which might provide novel targets for MIRI treatment.

Fermentation Properties and Increased Health Functionality of Kimchi by Kimchi Lactic Acid Bacteria Starters (김치 유산균 Starter를 이용한 김치의 발효 특성 및 기능성 증진 효과)

  • Bong, Yeon-Ju;Jeong, Ji-Kang;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1717-1726
    • /
    • 2013
  • Fermentation characteristics and health functionalities of kimchi by inoculating kimchi lactic acid bacteria (LAB) starters were studied. We manufactured single LAB starter kimchi (Lactobacillus plantarum pnuK, Lactobacillus plantarum 3099K, Leuconostoc mesenteroides pnuK), mixed LAB starter kimchi (Lb. plantarum pnu/Leu. mesenteroides pnuK, Lb. plantarum 3099/Leu. mesenteroides pnuK) with inoculum size of $10^6$ CFU/g, as well as naturally fermented kimchi (NK), and fermented them for 6 days at $15^{\circ}C$. The pH and acidity of the early phase of fermentation were not different, but kimchi with the starters showed rapid changes in the pH and acidity from 2 days of fermentation. As the fermentation progressed, the level of total aerobic bacteria and Lactobacillus sp. increased similarly with or without Lb. plantarum (LP) inoculation. However, the level of Leuconostoc sp. was high in kimchi inoculated with Leuconostoc sp. starter. In the sensory evaluation test, kimchi with starters received higher overall acceptability scores than those of NK; mixed starter added kimchi earned the highest score. In DPPH and hydroxyl radical scavenging activity, kimchi with the starters exhibited higher activity than that of NK. In the MTT assay of HCT-116 and HT-29 human colon cancer cells, NK showed inhibition rates of 63.4 and 51.9%, but LPpnuK achieved 77.1 and 68.8%, respectively. This study showed that inoculating starters in kimchi increased in vitro antioxidant and anticancer activities, and single starter (LP) added kimchi revealed higher functionality than the kimchi with mixed starter. Kimchis with the starters effectively up-regulated the gene expressions of the pro-apoptotic gene of Bax, but down-regulated Bcl-2. They promoted expressions of p53 and p21, and suppressed expressions of inflammation-related genes, iNOS and COX-2, compared with NK. Taken together, it is expected that using starters may help manufacture kimchi with improved sensory quality and health functionality.

Inhibitory Mechanisms of Cell Cycle Regulation Induced by Indole-3-carbinol in Hepatocellular Carci-noma HepG2 Cells. (간암 세포주에서의 Indole-3-Carbinol에 의해 유도되는 세포주기 억제 기전)

  • 김동우;이광수;김민경;조율희;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 2001
  • The naturally occurring chemical indole-3-carbinol (13C), found in vegetables of the Brassica genus, is a promising anticancer agent that was shown previ- ously to induce a Gl cell cycle arrest of human breast cancer cell lines, independent of estrogen receptor signaling. The anticancer activity of 13C and the possible mechanisms of its action were explored in a human hepatocellular carcinoma cell line, HepG2. Treatment of HepG2 cells with 13C suppressed the growth of the cells. The growth sup- pression caused by 13C ($IC_{50}$/: 444$\mu$M) was found to be partially due to its ability to stop the cell cycle in HepG2 cells. Western blot analysis for the Gl phase artiest demonstrated that the expression-levels of cyclin-dependent kinase (Cdk4, Cdk6) and cyclic D were reduced strongly after treatment of Hep72 cells with 13C (4007M) for 24- 72 hrs. Furthermore, I3C selectively abolished the expression of Cdk6 in a dose- and time-dependent manner, and accordingly, inhibited the phosphorylation of retinoblastoma. Interestingly, after the HepG2 cells reached their max- imal growth arrest, the level of the p21, a well-known Cdk inhibitor, increased significantly. Therefore, it could be considered that the Gl arrest of HepG2 cells treated with 13C was due to the indirect inhibition of Cdk4/6 activities by p21 Western blot analysis for G2/M phase arrest of demonstrated the levels of Cdc2 and cyclin Bl werer reduced dramatically after the treatment of HepG2 cells with 13C ($40\mu$M) for 24-72 hrs. flow cytometry of propidium iodide-stained HepG2 cells revealed that 13C induces a Gl (53%,72hr incubation) and G2 (25%,24hr incubation) cell cycle arrest. Thus, our observations have uncovered a previously undefined antiproliferative pathway for r3C that implicates Cdk4/6 and Cdc2 as a target for cell cycle control in human HepG2 cells. However, the 13C-medi- ated cell cycle arrest and repression of Cdk4/6 production did not affect the apoptotic induction of HepG2 cell.

  • PDF

Genome Type Analysis of Adenovirus Serotypes 1, 2 and 5 Isolated from Children with Lower Respiratory Tract Infections in Korea (하기도 감염 환아에서 분리된 Adenovirus 1, 2, 5 혈청형의 유전체형 분석)

  • Park, Ki-Won;Choi, Eun-Hwa;Choun, Ji-Tae;Lee, Hoan-Jong;Park, Ki-Ho
    • Pediatric Infection and Vaccine
    • /
    • v.12 no.2
    • /
    • pp.166-177
    • /
    • 2005
  • Purpose : The purpose of this study was to examine the molecular epidemiology and genetic variability of adenovirus(Ad) serotypes Ad1, Ad2, and Ad5 over 14 years in Korea. Methods : A total of 382 adenoviral strains isolated from the nasopharyngeal aspirates of children with lower respiratory tract infections in Seoul, Korea from November 1990 to February 2003 were serotyped by neutralization assay with type-specific antisera. Viral DNAs were extracted from infected cell lysates by the modified Hirt procedure. Genome type(GT) was determined by DNA restriction analysis with 12 restriction enzymess(BamHI, BclI, BglI, BglII, BstEII, EcoRI, HindIII, HpaI, SalI, SmaI, XbaI, and XhoI). To evaluate the genetic relatedness, pairwise comigrating restriction fragments(PCRF) analysis was performed. Results : Of 382 strains, 33 strains(9%) were Ad1, 45 strains(12%) were Ad2, and 24 strains(6%) were Ad5. Eighteen GTs(Ad1p1-Ad1p7, Ad1a, Ad1b, Ad1b1-Ad1b3, Ad1c, Ad1d, Ad1e, Ad1e1, Ad1e2, Ad1f) among Ad1, 24(Ad2p1-Ad2p11, Ad2a, Ad2a1-Ad2a6, Ad2b, Ad2c, Ad2d, Ad2e, Ad2e1-Ad2e3) among Ad2, and 10(Ad5p1, Ad5p2, Ad5a, Ad5a1-Ad5a7) among Ad5 strains were identified. One or two strains of the vast majority of GTs were isolated during the study period while a few GTs were identified sporadically with more than 2 strains. It is notable that some GTs such as Ad1p5 and Ad5a1 appeared in cluster during a short period. In analysis of genetic relatedness, the degree of PCRFs(pairwise comigrating restriction fragments) for Ad1 varied from 79 to 99%, for Ad2, 82 to 99%, and for Ad5, 85 to 99%. Conclusion : This study established the comprehensive nomenclature systems of Ad1, Ad2, and Ad5. Diverse GTs identified in this study have crucial implications in the genomic diversity and epidemiological characteristics of Ad1, Ad2, and Ad5.

  • PDF

Plumbagin from Plumbago Zeylanica L Induces Apoptosis in Human Non-small Cell Lung Cancer Cell Lines through NF-κB Inactivation

  • Xu, Tong-Peng;Shen, Hua;Liu, Ling-Xiang;Shu, Yong-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2325-2331
    • /
    • 2013
  • Objective: To detect effects of plumbagin on proliferation and apoptosis in non-small cell lung cancer cell lines, and investigate the underlying mechanisms. Materials and Methods: Human non-small cell lung cancer cell lines A549, H292 and H460 were treated with various concentrations of plumbagin. Cell proliferation rates was determined using both cell counting kit-8 (CCK-8) and clonogenic assays. Apoptosis was detected by annexin V/propidium iodide double-labeled flow cytometry and TUNEL assay. The levels of reactive oxygen species (ROS) were detected by flow cytometry. Activity of NF-${\kappa}B$ was examined by electrophoretic mobility shift assay (EMSA) and luciferase reporter assay. Western blotting was used to assess the expression of both NF-${\kappa}B$ regulated apoptotic-related gene and activation of p65 and $I{\kappa}B{\kappa}$. Results: Plumbagin dose-dependently inhibited proliferation of the lung cancer cells. The IC50 values of plumbagin in A549, H292, and H460 cells were 10.3 ${\mu}mol/L$, 7.3 ${\mu}mol/L$, and 6.1 ${\mu}mol/L$ for 12 hours, respectively. The compound concentration-dependently induced apoptosis of the three cell lines. Treatment with plumbagin increased the intracellular level of ROS, and inhibited the activation of NK-${\kappa}B$. In addition to inhibition of NF-${\kappa}B$/p65 nuclear translocation, the compound also suppressed the degradation of $I{\kappa}B{\kappa}$. ROS scavenger NAC highly reversed the effect of plumbagin on apoptosis and inactivation of NK-${\kappa}B$ in H460 cell line. Treatment with plumbagin also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl-2, upregulated the expression of Bax, Bak, and CytC. Conclusions: Plumbagin inhibits cell growth and induces apoptosis in human lung cancer cells through an NF-${\kappa}B$-regulated mitochondrial-mediated pathway, involving activation of ROS.

MPTP-induced vulnerability of dopamine neurons in A53T α-synuclein overexpressed mice with the potential involvement of DJ-1 downregulation

  • Lee, Seongmi;Oh, Seung Tack;Jeong, Ha Jin;Pak, Sok Cheon;Park, Hi-Joon;Kim, Jongpil;Cho, Hyun-seok;Jeon, Songhee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.625-632
    • /
    • 2017
  • Familial Parkinson's disease (PD) has been linked to point mutations and duplication of the ${\alpha}$-synuclein (${\alpha}$-syn) gene. Mutant ${\alpha}$-syn expression increases the vulnerability of neurons to exogenous insults. In this study, we developed a new PD model in the transgenic mice expressing mutant hemizygous (hemi) or homozygous (homo) A53T ${\alpha}$-synuclein (${\alpha}$-syn Tg) and their wildtype (WT) littermates by treatment with sub-toxic (10 mg/kg, i.p., daily for 5 days) or toxic (30 mg/kg, i.p., daily for 5 days) dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Tyrosine hydroxylase and Bcl-2 levels were reduced in the ${\alpha}$-syn Tg but not WT mice by sub-toxic MPTP injection. In the adhesive removal test, time to remove paper was significantly increased only in the homo ${\alpha}$-syn Tg mice. In the challenging beam test, the hemi and homo ${\alpha}$-syn Tg mice spent significantly longer time to traverse as compared to that of WT group. In order to find out responsible proteins related with vulnerability of mutant ${\alpha}$-syn expressed neurons, DJ-1 and ubiquitin enzyme expressions were examined. In the SN, DJ-1 and ubiquitin conjugating enzyme, UBE2N, levels were significantly decreased in the ${\alpha}$-syn Tg mice. Moreover, A53T ${\alpha}$-syn overexpression decreased DJ-1 expression in SH-SY5Y cells. These findings suggest that the vulnerability to oxidative injury such as MPTP of A53T ${\alpha}$-syn mice can be explained by downregulation of DJ-1.