• 제목/요약/키워드: Bayesian probabilistic method

Search Result 110, Processing Time 0.027 seconds

Localization Method for Multiple Robots Based on Bayesian Inference in Cognitive Radio Networks (인지 무선 네트워크에서의 베이지안 추론 기반 다중로봇 위치 추정 기법 연구)

  • Kim, Donggu;Park, Joongoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.104-109
    • /
    • 2016
  • In this paper, a localization method for multiple robots based on Bayesian inference is proposed when multiple robots adopting multi-RAT (Radio Access Technology) communications exist in cognitive radio networks. Multiple robots are separately defined by primary and secondary users as in conventional mobile communications system. In addition, the heterogeneous spectrum environment is considered in this paper. To improve the performance of localization for multiple robots, a realistic multiple primary user distribution is explained by using the probabilistic graphical model, and then we introduce the Gibbs sampler strategy based on Bayesian inference. In addition, the secondary user selection minimizing the value of GDOP (Geometric Dilution of Precision) is also proposed in order to overcome the limitations of localization accuracy with Gibbs sampling. Via the simulation results, we can show that the proposed localization method based on GDOP enhances the accuracy of localization for multiple robots. Furthermore, it can also be verified from the simulation results that localization performance is significantly improved with increasing number of observation samples when the GDOP is considered.

Improvement of the Reliability Graph with General Gates to Analyze the Reliability of Dynamic Systems That Have Various Operation Modes

  • Shin, Seung Ki;No, Young Gyu;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.386-403
    • /
    • 2016
  • The safety of nuclear power plants is analyzed by a probabilistic risk assessment, and the fault tree analysis is the most widely used method for a risk assessment with the event tree analysis. One of the well-known disadvantages of the fault tree is that drawing a fault tree for a complex system is a very cumbersome task. Thus, several graphical modeling methods have been proposed for the convenient and intuitive modeling of complex systems. In this paper, the reliability graph with general gates (RGGG) method, one of the intuitive graphical modeling methods based on Bayesian networks, is improved for the reliability analyses of dynamic systems that have various operation modes with time. A reliability matrix is proposed and it is explained how to utilize the reliability matrix in the RGGG for various cases of operation mode changes. The proposed RGGG with a reliability matrix provides a convenient and intuitive modeling of various operation modes of complex systems, and can also be utilized with dynamic nodes that analyze the failure sequences of subcomponents. The combinatorial use of a reliability matrix with dynamic nodes is illustrated through an application to a shutdown cooling system in a nuclear power plant.

Bayesian Inferrence and Context-Tree Matching Method for Intelligent Services in a Mobile Environment (모바일 환경에서의 지능형 서비스를 위한 베이지안 추론과 컨텍스트 트리 매칭방법)

  • Kim, Hee-Taek;Min, Jun-Ki;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.144-152
    • /
    • 2009
  • To provide intelligent service in mobile environment, it needs to estimate user's intention or requirement, through analyzing context information of end-users such as preference or behavior patterns. In this paper, we infer context information from uncertain log stored in mobile device. And we propose the inference method of end-user's behavior to match context information with service, and the proposed method is based on context-tree. We adopt bayesian probabilistic method to infer uncertain context information effectively, and the context-tree is constructed to utilize non-numerical context which is hard to handled with mathematical method. And we verify utility of proposed method by appling the method to intelligent phone book service.

Dynamic Bayesian Network Modeling and Reasoning Based on Ontology for Occluded Object Recognition of Service Robot (서비스 로봇의 가려진 물체 인식을 위한 온톨로지 기반 동적 베이지안 네트워크 모델링 및 추론)

  • Song, Youn-Suk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.2
    • /
    • pp.100-109
    • /
    • 2007
  • Object recognition of service robots is very important for most of services such as delivery, and errand. Conventional methods are based on the geometric models in static industrial environments, but they have limitations in indoor environments where the condition is changable and the movement of service robots occur because the interesting object can be occluded or small in the image according to their location. For solving these uncertain situations, in this paper, we propose the method that exploits observed objects as context information for predicting interesting one. For this, we propose the method for modeling domain knowledge in probabilistic frame by adopting Bayesian networks and ontology together, and creating knowledge model dynamically to extend reasoning models. We verify the performance of our method through the experiments and show the merit of inductive reasoning in the probabilistic model

Study on Modeling and Simulation for Fire Localization Using Bayesian Estimation (화원 위치 추정을 위한 베이시안 추정 기반의 모델링 및 시뮬레이션 연구)

  • Kim, Taewan;Kim, Soo Chan;Kim, Jong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.424-430
    • /
    • 2021
  • Fire localization is a key mission that must be preceded for an autonomous fire suppression system. Although studies using a variety of sensors for the localization are actively being conducted, the fire localization is still unfinished due to the high cost and low performance. This paper presents the modeling and simulation of the fire localization estimation using Bayesian estimation to determine the probabilistic location of the fire. To minimize the risk of fire accidents as well as the time and cost of preparing and executing live fire tests, a 40m × 40m-virtual space is created, where two ultraviolet sensors are simulated to rotate horizontally to collect ultraviolet signals. In addition, Bayesian estimation is executed to compute the probability of the fire location by considering both sensor errors and uncertainty under fire environments. For the validation of the proposed method, sixteen fires were simulated in different locations and evaluated by calculating the difference in distance between simulated and estimated fire locations. As a result, the proposed method demonstrates reliable outputs, showing that the error distribution tendency widens as the radial distance between the sensor and the fire increases.

Seismic capacity re-evaluation of the 480V motor control center of South Korea NPPs using earthquake experience and experiment data

  • Choi, Eujeong;Kim, Min Kyu;Choi, In-Kil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1363-1373
    • /
    • 2022
  • The recent seismic events that occurred in South Korea have increased the interest in the re-evaluation of the seismic capacity of nuclear power plant (NPP) equipment, which is often conservatively estimated. To date, various approaches-including the Bayesian method proposed by the United States (US) Electric Power Research Institute -have been developed to quantify the seismic capacity of NPP equipment. Among these, the Bayesian approach has advantages in accounting for both prior knowledge and new information to update the probabilistic distribution of seismic capacity. However, data availability and region-specific issues exist in applying this Bayesian approach to Korean NPP equipment. Therefore, this paper proposes to construct an earthquake experience database by combining available earthquake records at Korean NPP sites and the general location of equipment within NPPs. Also, for the better representation of the seismic demand of Korean earthquake datasets, which have distinct seismic characteristics from those of the US at a high-frequency range, a broadband frequency range optimization is suggested. The proposed data construction and seismic demand optimization method for seismic capacity re-evaluation are demonstrated and tested on a 480 V motor control center of a South Korea NPP.

Bayesian approach for the accuracy evaluating of the seismic demand estimation of SMRF

  • Ayoub Mehri Dehno;Hasan Aghabarati;Mehdi Mahdavi Adeli
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.117-130
    • /
    • 2024
  • Probabilistic model of seismic demand is the main tool used for seismic demand estimation, which is a fundamental component of the new performance-based design method. This model seeks to mathematically relate the seismic demand parameter and the ground motion intensity measure. This study is intended to use Bayesian analysis to evaluate the accuracy of the seismic demand estimation of Steel moment resisting frames (SMRFs) through a completely Bayesian method in statistical calculations. In this study, two types of intensity measures (earthquake intensity-related indices such as magnitude and distance and intensity indices related to ground motion and spectral response including peak ground acceleration (PGA) and spectral acceleration (SA)) have been used to form the models. In addition, an extensive database consisting of sixty accelerograms was used for time-series analysis, and the target structures included five SMRFs of three, six, nine, twelve and fifteen stories. The results of this study showed that for low-rise frames, first mode spectral acceleration index is sufficient to accurately estimate demand. However, for high-rise frames, two parameters should be used to increase the accuracy. In addition, adding the product of the square of earthquake magnitude multiplied by distance to the model can significantly increase the accuracy of seismic demand estimation.

A hierarchical Bayesian model for spatial scaling method: Application to streamflow in the Great Lakes basin

  • Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.176-176
    • /
    • 2018
  • This study presents a regional, probabilistic framework for estimating streamflow via spatial scaling in the Great Lakes basin, which is the largest lake system in the world. The framework follows a two-fold strategy including (1) a quadratic-programming based optimization model a priori to explore the model structure, and (2) a time-varying hierarchical Bayesian model based on insights found in the optimization model. The proposed model is developed to explore three innovations in hierarchical modeling for reconstructing historical streamflow at ungaged sites: (1) information of physical characteristics is utilized in spatial scaling, (2) a time-varying approach is introduced based on climate information, and (3) heteroscedasticity in residual errors is considered to improve streamflow predictive distributions. The proposed model is developed and calibrated in a hierarchical Bayesian framework to pool regional information across sites and enhance regionalization skill. The model is validated in a cross-validation framework along with four simpler nested formulations and the optimization model to confirm specific hypotheses embedded in the full model structure. The nested models assume a similar hierarchical Bayesian structure to our proposed model with their own set of simplifications and omissions. Results suggest that each of three innovations improve historical out-of-sample streamflow reconstructions although these improvements vary corrsponding to each innovation. Finally, we conclude with a discussion of possible model improvements considered by additional model structure and covariates.

  • PDF

Study of Emotion Recognition based on Facial Image for Emotional Rehabilitation Biofeedback (정서재활 바이오피드백을 위한 얼굴 영상 기반 정서인식 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.957-962
    • /
    • 2010
  • If we want to recognize the human's emotion via the facial image, first of all, we need to extract the emotional features from the facial image by using a feature extraction algorithm. And we need to classify the emotional status by using pattern classification method. The AAM (Active Appearance Model) is a well-known method that can represent a non-rigid object, such as face, facial expression. The Bayesian Network is a probability based classifier that can represent the probabilistic relationships between a set of facial features. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with FACS (Facial Action Coding System) for automatically modeling and extracting the facial emotional features. To recognize the facial emotion, we use the DBNs (Dynamic Bayesian Networks) for modeling and understanding the temporal phases of facial expressions in image sequences. The result of emotion recognition can be used to rehabilitate based on biofeedback for emotional disabled.

Probabilistic Graph Based Object Category Recognition Using the Context of Object-Action Interaction (물체-행동 컨텍스트를 이용하는 확률 그래프 기반 물체 범주 인식)

  • Yoon, Sung-baek;Bae, Se-ho;Park, Han-je;Yi, June-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2284-2290
    • /
    • 2015
  • The use of human actions as context for object class recognition is quite effective in enhancing the recognition performance despite the large variation in the appearance of objects. We propose an efficient method that integrates human action information into object class recognition using a Bayesian appraoch based on a simple probabilistic graph model. The experiment shows that by using human actions ac context information we can improve the performance of the object calss recognition from 8% to 28%.