• Title/Summary/Keyword: Bayesian multiple testing

Search Result 15, Processing Time 0.019 seconds

A Bayesian Multiple Testing of Detecting Differentially Expressed Genes in Two-sample Comparison Problem

  • Oh Hyun-Sook;Yang Wan-Youn
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.39-47
    • /
    • 2006
  • The Bayesian approach to multiple testing procedure for one sample testing problem proposed by Scott and Berger (2003) is extended to two-sample comparison problem in microarray experiments. The prior distribution of each gene's mean for one sample is given conditionally on the corresponding gene's mean for the other sample. Posterior distributions of interesting parameters are derived and estimated based on an importance sampling method. A simulated example is given for illustration.

Objective Bayesian multiple hypothesis testing for the shape parameter of generalized exponential distribution

  • Lee, Woo Dong;Kim, Dal Ho;Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.217-225
    • /
    • 2017
  • This article deals with the problem of multiple hypothesis testing for the shape parameter in the generalized exponential distribution. We propose Bayesian hypothesis testing procedures for multiple hypotheses of the shape parameter with the noninformative prior. The Bayes factor with the noninformative prior is not well defined. The reason is that the most of the noninformative prior can be improper. Therefore we study the default Bayesian multiple hypothesis testing methods using the fractional and intrinsic Bayes factors with the reference priors. Simulation study is performed and an example is given.

Estimating the Failure Rate of a Large Scaled Software in Multiple Input Domain Testing (다중입력영역시험에서의 대형 소프트웨어 고장률 추정 연구)

  • 문숙경
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.3
    • /
    • pp.186-194
    • /
    • 2002
  • In this paper we introduce formulae for estimating the failure rate of a large scaled software by using the Bayesian rule when a black-box random testing which selects an element(test case) at random with equally likely probability, is performed. A program or software can be treated as a mathematical function with a well-defined (input)domain and range. For a large scaled software, their input domains can be partitioned into multiple subdomains and exhaustive testing is not generally practical. Testing is proceeding with selecting a subdomain, and then picking a test case from within the selected subdomain. Whether or not the proportion of selecting one of the subdomains is assumed probability, we developed the formulae either case by using Bayesian rule with gamma distribution as a prior distribution.

Bayesian Multiple Comparisons for K-Exponential Populations with Type-II Censored Data by Fractional Bayes Factors

  • Mun, Gyeong-Ae;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.1
    • /
    • pp.67-77
    • /
    • 2002
  • We propose the Bayesian testing for the equality of K-exponential populations means with Type-II censored data. Specially we use the fractional Bayesian factors suggested by O'Hagan (1995) based on the noninformative priors for the parameters. And, we investigate the usefulness of the proposed Bayesian testing procedures via both real data analysis and simulations and compare the classical likelihood ratio(LR) test with the proposed Bayesian test.

  • PDF

Bayesian Multiple Comparisons for the Ratio of the Failure Rates in Two Components System

  • Cho, Jang-Sik;Cho, Kil-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.647-655
    • /
    • 2006
  • In this paper, we consider multiple comparisons for the ratio of the failure rates in two components system that the lifetimes of the components have independent exponential distributions. Also we suggest Bayesian multiple comparisons procedure based on fractional Bayes factor when noninformative priors are applied for the parameters. Finally, we give numerical examples to illustrate our procedure.

  • PDF

Bayesian Analysis of Software Reliability Growth Model with Negative Binomial Information (음이항분포 정보를 가진 베이지안 소프트웨어 신뢰도 성장모형에 관한 연구)

  • Kim, Hui-Cheol;Park, Jong-Gu;Lee, Byeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.852-861
    • /
    • 2000
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals betwewn software failures. In this paper, using priors for the number of fault with the negative binomial distribution nd the error rate with gamma distribution, Bayesian inference and model selection method for Jelinski-Moranda and Goel-Okumoto and Schick-Wolverton models in software reliability. For model selection, we explored the sum of the relative error, Braun statistic and median variation. In Bayesian computation process, we could avoid the multiple integration by the use of Gibbs sampling, which is a kind of Markov Chain Monte Carolo method to compute the posterior distribution. Using simulated data, Bayesian inference and model selection is studied.

  • PDF

Bayesian Testing for the Equality of K-Lognormal Populations (부분 베이즈요인을 이용한 K개로 로그정규분포의 상등에 관한 베이지안 다중검정)

  • 문경애;김달호
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.2
    • /
    • pp.449-462
    • /
    • 2001
  • 베이지안 다중 검정방법(multiple hypothesis test)은 여러 통계모형에서 성공적인 결과를 주는 것으로 알려져있다. 일반적으로, 베이지안 가설검정은 고려중인 모형에 대한 사후확률을 계산하여 가장 높은 확률은 갖는 모형을 선택하기 때문에 귀무가설의 기각여부에만 관심을 가지는 고전적인 분산분석 검정과는 달리 좀 더 구체적인 모형을 선택할 수 있는 장점이 있다. 이 논문에서는 독립이면서 로그정규분포를 따르는 K($\geq$3)개 모집단의 모수에 대한 가설 검정방법으로 O’Hagan(1995)이 제안한 부분 베이즈 요인을 이용한 베이지안 방법을 제안한다. 이 때 모수에 대한 사전분포로는 무정보적 사전분포를 사용한다. 제안한 검정 방법의 유용성을 알아보기 위하여 실제 자료의 분석과 모의 실험을 이용하여 고전적인 검정방법과 그 결과를 비교한다.

  • PDF

Bayesian Inference and Model Selection for Software Growth Reliability Models using Gibbs Sampler (몬테칼로 깁스방법을 적용한 소프트웨어 신뢰도 성장모형에 대한 베이지안 추론과 모형선택에 관한 연구)

  • 김희철;이승주
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.3
    • /
    • pp.125-141
    • /
    • 1999
  • Bayesian inference and model selection method for software reliability growth models are studied. Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. In this paper, we could avoid the multiple integration by the use of Gibbs sampling, which is a kind of Markov Chain Monte Carlo method to compute the posterior distribution. Bayesian inference and model selection method for Jelinski-Moranda and Goel-Okumoto and Schick-Wolverton models in software reliability with Poisson prior information are studied. For model selection, we explored the relative error.

  • PDF

Quality Variable Prediction for Dynamic Process Based on Adaptive Principal Component Regression with Selective Integration of Multiple Local Models

  • Tian, Ying;Zhu, Yuting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1193-1215
    • /
    • 2021
  • The measurement of the key product quality index plays an important role in improving the production efficiency and ensuring the safety of the enterprise. Since the actual working conditions and parameters will inevitably change to some extent with time, such as drift of working point, wear of equipment and temperature change, etc., these will lead to the degradation of the quality variable prediction model. To deal with this problem, the selective integrated moving windows based principal component regression (SIMV-PCR) is proposed in this study. In the algorithm of traditional moving window, only the latest local process information is used, and the global process information will not be enough. In order to make full use of the process information contained in the past windows, a set of local models with differences are selected through hypothesis testing theory. The significance levels of both T - test and χ2 - test are used to judge whether there is identity between two local models. Then the models are integrated by Bayesian quality estimation to improve the accuracy of quality variable prediction. The effectiveness of the proposed adaptive soft measurement method is verified by a numerical example and a practical industrial process.

Bayesian bi-level variable selection for genome-wide survival study

  • Eunjee Lee;Joseph G. Ibrahim;Hongtu Zhu
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.28.1-28.13
    • /
    • 2023
  • Mild cognitive impairment (MCI) is a clinical syndrome characterized by the onset and evolution of cognitive impairments, often considered a transitional stage to Alzheimer's disease (AD). The genetic traits of MCI patients who experience a rapid progression to AD can enhance early diagnosis capabilities and facilitate drug discovery for AD. While a genome-wide association study (GWAS) is a standard tool for identifying single nucleotide polymorphisms (SNPs) related to a disease, it fails to detect SNPs with small effect sizes due to stringent control for multiple testing. Additionally, the method does not consider the group structures of SNPs, such as genes or linkage disequilibrium blocks, which can provide valuable insights into the genetic architecture. To address the limitations, we propose a Bayesian bi-level variable selection method that detects SNPs associated with time of conversion from MCI to AD. Our approach integrates group inclusion indicators into an accelerated failure time model to identify important SNP groups. Additionally, we employ data augmentation techniques to impute censored time values using a predictive posterior. We adapt Dirichlet-Laplace shrinkage priors to incorporate the group structure for SNP-level variable selection. In the simulation study, our method outperformed other competing methods regarding variable selection. The analysis of Alzheimer's Disease Neuroimaging Initiative (ADNI) data revealed several genes directly or indirectly related to AD, whereas a classical GWAS did not identify any significant SNPs.