• Title/Summary/Keyword: Bayesian logistic regression

Search Result 37, Processing Time 0.023 seconds

Bayesian Logistic Regression for Human Detection (Human Detection 을 위한 Bayesian Logistic Regression)

  • Aurrahman, Dhi;Setiawan, Nurul Arif;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.569-572
    • /
    • 2008
  • The possibility to extent the solution in human detection problem for plug-in on vision-based Human Computer Interaction domain is very attractive, since the successful of the machine leaning theory and computer vision marriage. Bayesian logistic regression is a powerful classifier performing sparseness and high accuracy. The difficulties of finding people in an image will be conquered by implementing this Bavesian model as classifier. The comparison with other massive classifier e.g. SVM and RVM will introduce acceptance of this method for human detection problem. Our experimental results show the good performance of Bavesian logistic regression in human detection problem, both in trade-off curves (ROC, DET) and real-implementation compare to SVM and RVM.

  • PDF

Bayesian inference of the cumulative logistic principal component regression models

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.203-223
    • /
    • 2022
  • We propose a Bayesian approach to cumulative logistic regression model for the ordinal response based on the orthogonal principal components via singular value decomposition considering the multicollinearity among predictors. The advantage of the suggested method is considering dimension reduction and parameter estimation simultaneously. To evaluate the performance of the proposed model we conduct a simulation study with considering a high-dimensional and highly correlated explanatory matrix. Also, we fit the suggested method to a real data concerning sprout- and scab-damaged kernels of wheat and compare it to EM based proportional-odds logistic regression model. Compared to EM based methods, we argue that the proposed model works better for the highly correlated high-dimensional data with providing parameter estimates and provides good predictions.

Inferential Problems in Bayesian Logistic Regression Models (베이지안 로지스틱 회귀모형에서의 추론에 대한 연구)

  • Hwang, Jin-Soo;Kang, Sung-Chan
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1149-1160
    • /
    • 2011
  • Model selection and hypothesis testing problems in Bayesian inference are still debated between scholars. Bayesian factors traditionally used as a criterion in Bayesian hypothesis testing and model selection, are easy to understand but sometimes hard to compute. In addition, there are other model selection criterions such as DIC(Deviance Information Criterion) by Spiegelhalter et al. (2002) and Bayesian P-values for testing. In this paper, we briefly introduce the Bayesian hypothesis testing and model selection procedure. In addition we have applied a Bayesian inference to Swiss banknote data by a fitting logistic regression model and computing several test statistics to see if they provide consistent results.

A Bayesian Method for Narrowing the Scope of Variable Selection in Binary Response Logistic Regression

  • Kim, Hea-Jung;Lee, Ae-Kyung
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.143-160
    • /
    • 1998
  • This article is concerned with the selection of subsets of predictor variables to be included in bulding the binary response logistic regression model. It is based on a Bayesian aproach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the logistic regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. It is done by use of the fact that cdf of logistic distribution is a, pp.oximately equivalent to that of $t_{(8)}$/.634 distribution. The a, pp.opriate posterior probability of each subset of predictor variables is obtained by the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as that with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

The probabilistic estimation of inundation region using a multiple logistic regression analysis (다중 Logistic 회귀분석을 통한 침수지역의 확률적 도출)

  • Jung, Minkyu;Kim, Jin-Guk;Uranchimeg, Sumiya;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • The increase of impervious surface and development along the river due to urbanization not only causes an increase in the number of associated flood risk factors but also exacerbates flood damage, leading to difficulties in flood management. Flood control measures should be prioritized based on various geographical information in urban areas. In this study, a probabilistic flood hazard assessment was applied to flood-prone areas near an urban river. Flood hazard maps were alternatively considered and used to describe the expected inundation areas for a given set of predictors such as elevation, slope, runoff curve number, and distance to river. This study proposes a Bayesian logistic regression-based flood risk model that aims to provide a probabilistic risk metric such as population-at-risk (PAR). Finally, the logistic regression model demonstrates the probabilistic flood hazard maps for the entire area.

Nomogram comparison conducted by logistic regression and naïve Bayesian classifier using type 2 diabetes mellitus (T2D) (제 2형 당뇨병을 이용한 로지스틱과 베이지안 노모그램 구축 및 비교)

  • Park, Jae-Cheol;Kim, Min-Ho;Lee, Jea-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.573-585
    • /
    • 2018
  • In this study, we fit the logistic regression model and naïve Bayesian classifier model using 11 risk factors to predict the incidence rate probability for type 2 diabetes mellitus. We then introduce how to construct a nomogram that can help people visually understand it. We use data from the 2013-2015 Korean National Health and Nutrition Examination Survey (KNHANES). We take 3 interactions in the logistic regression model to improve the quality of the analysis and facilitate the application of the left-aligned method to the Bayesian nomogram. Finally, we compare the two nomograms and examine their utility. Then we verify the nomogram using the ROC curve.

Comparison of nomogram construction methods using chronic obstructive pulmonary disease (만성 폐쇄성 폐질환을 이용한 노모그램 구축과 비교)

  • Seo, Ju-Hyun;Lee, Jea-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.329-342
    • /
    • 2018
  • Nomogram is a statistical tool that visualizes the risk factors of the disease and then helps to understand the untrained people. This study used risk factors of chronic obstructive pulmonary disease (COPD) and compared with logistic regression model and naïve Bayesian classifier model. Data were analyzed using the Korean National Health and Nutrition Examination Survey 6th (2013-2015). First, we used 6 risk factors about COPD. We constructed nomogram using logistic regression model and naïve Bayesian classifier model. We also compared the nomograms constructed using the two methods to find out which method is more appropriate. The receiver operating characteristic curve and the calibration plot were used to verify each nomograms.

Extraction of Potential Area for Block Stream and Talus Using Spatial Integration Model (공간통합 모델을 적용한 암괴류 및 애추 지형 분포가능지 추출)

  • Lee, Seong-Ho;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • This study analyzed the relativity between block stream and talus distributions by employing a likelihood ratio approach. Possible distribution sites for each debris slope landform were extracted by applying a spatial integration model, in which we combined fuzzy set model, Bayesian predictive model, and logistic regression model. Moreover, to verify model performance, a success rate curve was prepared by cross-validation. The results showed that elevation, slope, curvature, topographic wetness index, geology, soil drainage, and soil depth were closely related to the debris slope landform sites. In addition, all spatial integration models displayed an accuracy of over 90%. The accuracy of the distribution potential area map of the block stream was highest in the logistic regression model (93.79%). Eventually, the accuracy of the distribution potential area map of the talus was also highest in the logistic regression model (97.02%). We expect that the present results will provide essential data and propose methodologies to improve the performance of efficient and systematic micro-landform studies. Moreover, our research will potentially help to enhance field research and topographic resource management.

Introduction to variational Bayes for high-dimensional linear and logistic regression models (고차원 선형 및 로지스틱 회귀모형에 대한 변분 베이즈 방법 소개)

  • Jang, Insong;Lee, Kyoungjae
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • In this paper, we introduce existing Bayesian methods for high-dimensional sparse regression models and compare their performance in various simulation scenarios. Especially, we focus on the variational Bayes approach proposed by Ray and Szabó (2021), which enables scalable and accurate Bayesian inference. Based on simulated data sets from sparse high-dimensional linear regression models, we compare the variational Bayes approach with other Bayesian and frequentist methods. To check the practical performance of the variational Bayes in logistic regression models, a real data analysis is conducted using leukemia data set.

A Bayesian Threshold Model for Ordered Categorical Traits (순서범주형자료 분석을 위한 베이지안 분계점 모형)

  • Choi Byangsu;Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.173-182
    • /
    • 2005
  • A Bayesian threshold model is considered to analyze binary or ordered categorical traits. Gibbs sampler for making full Bayesian inferences about the category probability as well as the regression coefficients is described. The model can be regarded as an alternative to the ordered logit regression model. Numerical examples are shown to demonstrate the efficiency of the model.