• Title/Summary/Keyword: Bayesian linear model

Search Result 152, Processing Time 0.024 seconds

Stochastic upscaling via linear Bayesian updating

  • Sarfaraz, Sadiq M.;Rosic, Bojana V.;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.211-232
    • /
    • 2018
  • In this work we present an upscaling technique for multi-scale computations based on a stochastic model calibration technique. We consider a coarse-scale continuum material model described in the framework of generalized standard materials. The model parameters are considered uncertain, and are determined in a Bayesian framework for the given fine scale data in a form of stored energy and dissipation potential. The proposed stochastic upscaling approach is independent w.r.t. the choice of models on coarse and fine scales. Simple numerical examples are shown to demonstrate the ability of the proposed approach to calibrate coarse scale elastic and inelastic material parameters.

Bayesian Estimation Procedure in Multiprocess Non-Linear Dynamic Normal Model

  • Sohn, Joong-Kweon;Kang, Sang-Gil
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.155-168
    • /
    • 1996
  • In this paper we consider the multiprocess dynamic normal model with parameters having a time dependent non-linear structure. We develop and study the recursive estimation procedure for the proposed model with normality assumption. It turns out thst the proposed model has nice properties such as insensitivity to outliers and quick reaction to abrupt changes of pattern.

  • PDF

Bayesian Analysis for Categorical Data with Missing Traits Under a Multivariate Threshold Animal Model (다형질 Threshold 개체모형에서 Missing 기록을 포함한 이산형 자료에 대한 Bayesian 분석)

  • Lee, Deuk-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.151-164
    • /
    • 2002
  • Genetic variance and covariance components of the linear traits and the ordered categorical traits, that are usually observed as dichotomous or polychotomous outcomes, were simultaneously estimated in a multivariate threshold animal model with concepts of arbitrary underlying liability scales with Bayesian inference via Gibbs sampling algorithms. A multivariate threshold animal model in this study can be allowed in any combination of missing traits with assuming correlation among the traits considered. Gibbs sampling algorithms as a hierarchical Bayesian inference were used to get reliable point estimates to which marginal posterior means of parameters were assumed. Main point of this study is that the underlying values for the observations on the categorical traits sampled at previous round of iteration and the observations on the continuous traits can be considered to sample the underlying values for categorical data and continuous data with missing at current cycle (see appendix). This study also showed that the underlying variables for missing categorical data should be generated with taking into account for the correlated traits to satisfy the fully conditional posterior distributions of parameters although some of papers (Wang et al., 1997; VanTassell et al., 1998) presented that only the residual effects of missing traits were generated in same situation. In present study, Gibbs samplers for making the fully Bayesian inferences for unknown parameters of interests are played rolls with methodologies to enable the any combinations of the linear and categorical traits with missing observations. Moreover, two kinds of constraints to guarantee identifiability for the arbitrary underlying variables are shown with keeping the fully conditional posterior distributions of those parameters. Numerical example for a threshold animal model included the maternal and permanent environmental effects on a multiple ordered categorical trait as calving ease, a binary trait as non-return rate, and the other normally distributed trait, birth weight, is provided with simulation study.

Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium

  • Ma, Zhi;Yun, Chung-Bang;Shen, Yan-Bin;Yu, Feng;Wan, Hua-Ping;Luo, Yao-Zhi
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.507-524
    • /
    • 2019
  • A Bayesian dynamic linear model (BDLM) is presented for a data-driven analysis for response prediction and load effect separation of a revolving auditorium structure, where the main loads are self-weight and dead loads, temperature load, and audience load. Analyses are carried out based on the long-term monitoring data for static strains on several key members of the structure. Three improvements are introduced to the ordinary regression BDLM, which are a classificatory regression term to address the temporary audience load effect, improved inference for the variance of observation noise to be updated continuously, and component discount factors for effective load effect separation. The effects of those improvements are evaluated regarding the root mean square errors, standard deviations, and 95% confidence intervals of the predictions. Bayes factors are used for evaluating the probability distributions of the predictions, which are essential to structural condition assessments, such as outlier identification and reliability analysis. The performance of the present BDLM has been successfully verified based on the simulated data and the real data obtained from the structural health monitoring system installed on the revolving structure.

The Impact of Foreign Ownership on Capital Structure: Empirical Evidence from Listed Firms in Vietnam

  • NGUYEN, Van Diep;DUONG, Quynh Nga
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.2
    • /
    • pp.363-370
    • /
    • 2022
  • The study aims to probe the impact of foreign ownership on Vietnamese listed firms' capital structure. This study employs panel data of 288 non-financial firms listed on the Ho Chi Minh City stock exchange (HOSE) and Ha Noi stock exchange (HNX) in 2015-2019. In this research, we applied a Bayesian linear regression method to provide probabilistic explanations of the model uncertainty and effect of foreign ownership on the capital structure of non-financial listed enterprises in Vietnam. The findings of experimental analysis by Bayesian linear regression method through Markov chain Monte Carlo (MCMC) technique combined with Gibbs sampler suggest that foreign ownership has substantial adverse effects on the firms' capital structure. Our findings also indicate that a firm's size, age, and growth opportunities all have a strong positive and significant effect on its debt ratio. We found that the firms' profitability, tangible assets, and liquidity negatively and strongly affect firms' capital structure. Meanwhile, there is a low negative impact of dividends and inflation on the debt ratio. This research has ramifications for business managers since it improves a company's financial resources by developing a strong capital structure and considering foreign investment as a source of funding.

A Study on the Bayes Linear Estimator for the 2-stage Randomized Response Models (2-단계 확률화응답모형에 대한 베이즈 선형추정량에 관한 연구)

  • Yum, Joon-Keun;Son, Chang-Kyoon
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.3
    • /
    • pp.113-125
    • /
    • 1995
  • This paper describes the 2-stage randomized response model in the Bayesian view point. The classical Bayesian analysis needs the complete information for a prior density, but the Bayes linear estimator needs only the first and second moments. Therefore, it is convenient to find the estimator and this estimator robusts to a prior density. We show that MSE's of the Bayes linear estimators for the 2-stage randomized response models are smaller than those of the MLE's for the 2-stage randomized response models.

  • PDF

A Bayesian Approach to Linear Calibration Design Problem

  • Kim, Sung-Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.105-122
    • /
    • 1995
  • Based on linear models, the inference about the true measurement x$_{f}$ and the optimal designs x (nx1) for the calibration experiments are considered via Baysian statistical decision analysis. The posterior distribution of x$_{f}$ given the observation y$_{f}$ (qxl) and the calibration experiment is obtained with normal priors for x$_{f}$ and for themodel parameters (.alpha., .betha.). This posterior distribution is not in the form of any known distributions, which leads to the use of a numerical integration or an approximation for the calculation of the overall expected loss. The general structure of the expected loss function is characterized in the form of a conjecture. A near-optimal design is obtained through the approximation nof the conditional covariance matrix of the joint distribution of (x$_{f}$ , y$_{f}$ $^{T}$ )$^{T}$ . Numerical results for the univariate case are given to demonstrate the conjecture and to evaluate the approximation.n.

  • PDF

Estimation of Genetic Variations for Linear Type Traits and Composite Traits on Holstein Cows (Holstein 젖소의 선형심사형질과 등급형질에 대한 유전변이 추정)

  • 이득환
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.161-168
    • /
    • 2006
  • Genetic parameters for linear type and composite traits were estimated by using Bayesian inference via Gibbs sampling with a multiple threshold animal model in Holstein cows. Fifteen linear type traits and 5 composite traits were included to estimate genetic variance and covariance components in the model. In this study, 30,204 records were obtained in the cows from 305 sires. Heritability estimates for linear type traits had the estimates as high as 0.28~0.64. Heritability estimates for composite traits were also high, when the traits were assumed to be categorical traits. Final score was more correlated with the composite traits than with the linear type traits.

Assessment of variability and uncertainty in bias correction parameters for radar rainfall estimates based on topographical characteristics (지형학적 특성을 고려한 레이더 강수량 편의보정 매개변수의 변동성 및 불확실성 분석)

  • Kim, Tae-Jeong;Ban, Woo-Sik;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.589-601
    • /
    • 2019
  • Various applications of radar rainfall data have been actively employed in the field of hydro-meteorology. Since radar rainfall is estimated by using predefined reflectivity-rainfall intensity relationships, they may not have sufficient reproducibility of observations. In this study, a generalized linear model is introduced to better capture the Z-R relationship in the context of bias correction within a Bayesian regression framework. The bias-corrected radar rainfall with the generalized linear model is more accurate than the widely used mean field bias correction method. In addition, we analyzed variability of the bias correction parameters under various geomorphological conditions such as the height of the weather station and the separation distance from the radar. The identified relationship is finally used to derive a regionalized formula which can provide bias correction factors over the entire watershed. It can be concluded that the bias correction parameters and regionalized method obtained from this study could be useful in the field of radar hydrology.

Variable Selection in Linear Random Effects Models for Normal Data

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.4
    • /
    • pp.407-420
    • /
    • 1998
  • This paper is concerned with selecting covariates to be included in building linear random effects models designed to analyze clustered response normal data. It is based on a Bayesian approach, intended to propose and develop a procedure that uses probabilistic considerations for selecting premising subsets of covariates. The approach reformulates the linear random effects model in a hierarchical normal and point mass mixture model by introducing a set of latent variables that will be used to identify subset choices. The hierarchical model is flexible to easily accommodate sign constraints in the number of regression coefficients. Utilizing Gibbs sampler, the appropriate posterior probability of each subset of covariates is obtained. Thus, In this procedure, the most promising subset of covariates can be identified as that with highest posterior probability. The procedure is illustrated through a simulation study.

  • PDF