• 제목/요약/키워드: Bayesian learner

검색결과 2건 처리시간 0.018초

A new security model in p2p network based on Rough set and Bayesian learner

  • Wang, Hai-Sheng;Gui, Xiao-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권9호
    • /
    • pp.2370-2387
    • /
    • 2012
  • A new security management model based on Rough set and Bayesian learner is proposed in the paper. The model focuses on finding out malicious nodes and getting them under control. The degree of dissatisfaction (DoD) is defined as the probability that a node belongs to the malicious node set. Based on transaction history records local DoD (LDoD) is calculated. And recommended DoD (RDoD) is calculated based on feedbacks on recommendations (FBRs). According to the DoD, nodes are classified and controlled. In order to improve computation accuracy and efficiency of the probability, we employ Rough set combined with Bayesian learner. For the reason that in some cases, the corresponding probability result can be determined according to only one or two attribute values, the Rough set module is used; And in other cases, the probability is computed by Bayesian learner. Compared with the existing trust model, the simulation results demonstrate that the model can obtain higher examination rate of malicious nodes and achieve the higher transaction success rate.

속성 값 빈도 기반의 전문가 다수결 분류기 (Committee Learning Classifier based on Attribute Value Frequency)

  • 이창환;정인철;권영식
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제37권4호
    • /
    • pp.177-184
    • /
    • 2010
  • 센서 정보, 물류/유통정보, 신용 정보, 주식 정보 등이 과거보다 다양하면서 대용량의 연속 발생 형태 데이터가 발생하고 있다. 이러한 데이터는 대용량의 특의 변화가 빠른 특징들을 가지고 있기 때문에 학습이 어렵다. 이러한 문제점을 해결하기 위해 일정 윈도우 크기의 최근 데이터를 연속적으로 학습시킴으로써 전체 모형을 새롭게 만들거나 모형의 일부분을 대체 하는 방법을 사용하여 왔다. 그러나 이러한 방법은 계속해서 새로운 학습모형을 만들어야 하므로 대용량의 연속 데이터를 학습시키는데 많은 시간과 비용이 든다. 따라서, 이러한 특성에 대비하기 위하여 추가적인 학습 데이터가 발생할 때 마다, 점진적이며 지속적으로 학습을 할 수 있는 학습 기법이 필요하다. 보다 빠른 속도로 학습 모형의 변화 없이 분류를 하기 위하여 대표적인 점진적 학습 방법으로 베이지안 분류기를 사용할 수 있지만, 사전확률을 알고 있다는 가정으로부터 시작을 하게 되어 일정량 이상의 학습데이터가 필요하다. 따라서 본 연구에서는 베이지안 분류기와 같이 점진적으로 학습을 할 수 있지만, 사전 확률을 알지 못하더라고 학습을 할 수 있는 새로운 점진적 학습 알고리즘을 제안하고자 한다. 본 연구에서 제안하는 알고리즘의 기본 개념은 여러 전문가의 의견을 종합하는 방식이다. 여기서는 속성값(attribute value)을 한명의 전문가로 보고 전문가 집단의 의사 결정이 맞을 경우에는 가점을 주고 틀릴 경우에는 감점을 하는 방식으로 학습을 하게 된다. 실험결과 이 방법은 의사결정나무나 베이지언 분류기와 비교해 비슷한 성능을 나타내었으며, 향후에 스트림 데이터 분석에 사용할 가능성을 보였다.