• Title/Summary/Keyword: Bayesian information criterion

Search Result 121, Processing Time 0.021 seconds

Review on the inversion Analysis of Geophysical Data (지구물리자료의 역산해석에 관한 개관)

  • Kim Hee Joon;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.112-121
    • /
    • 1999
  • This article reviews the development of geophysical inverse theory. In a series of articles published in 1967, 1968, and 1979, G. Backus and F. Gilbert a trade-off between model resolution and estimation errors in geophysical inverse problems, and gave a criterion to compromise the reciprocal relation. Although the criterion was not clear in the physical point of view, it had been extensively used in the interpretation of geophysical date in the 1970s. This was the starting point of the fruitful development of inverse theory in geophysics. A reasonable criterion to compromise the reciprocal relation was derived to solve linear problems by D. D. jackson in 1979, introducing the concept of a priori information about unknown model parameters. This Jackson's approach was extended to solve nonlinear problems on the basis o probabilistic approach to the inverse problems formulated by A. Tarantola and B. Vallete in 1982. At the end of 1980s ABIC (Akaike Bayesian Information Criterion) was introduced for selecting a more reasonable model in geophysics. Now the date inversion is regarded as the process of extracting new information from observed data, combining in with a priori information about model parameters, and constructing a more clear image of model.

  • PDF

Evaluation of Related Risk Factors in Number of Musculoskeletal Disorders Among Carpet Weavers in Iran

  • Karimi, Nasim;Moghimbeigi, Abbas;Motamedzade, Majid;Roshanaei, Ghodratollah
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.322-325
    • /
    • 2016
  • Background: Musculoskeletal disorders (MSDs) are a common problem among carpet weavers. This study was undertaken to introduce affecting personal and occupational factors in developing the number of MSDs among carpet weavers. Methods: A cross-sectional study was performed among 862 weavers in seven towns with regard to workhouse location in urban or rural regions. Data were collected by using questionnaires that contain personal, workplace, and information tools and the modified Nordic MSDs questionnaire. Statistical analysis was performed by applying Poisson and negative binomial mixed models using a full Bayesian hierarchical approach. The deviance information criterion was used for comparison between models and model selection. Results: The majority of weavers (72%) were female and carpet weaving was the main job of 85.2% of workers. The negative binomial mixed model with lowest deviance information criterion was selected as the best model. The criteria showed the convergence of chains. Based on 95% Bayesian credible interval, the main job and weaving type variables statistically affected the number of MSDs, but variables age, sex, weaving comb, work experience, and carpet weaving looms were not significant. Conclusion: According to the results of this study, it can be concluded that occupational factors are associated with the number of MSDs developing among carpet weavers. Thus, using standard tools and decreasing hours of work per day can reduce frequency of MSDs among carpet weavers.

Bayesian Analysis of Binary Non-homogeneous Markov Chain with Two Different Time Dependent Structures

  • Sung, Min-Je
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.19-35
    • /
    • 2006
  • We use the hierarchical Bayesian approach to describe the transition probabilities of a binary nonhomogeneous Markov chain. The Markov chain is used for describing the transition behavior of emotionally disturbed children in a treatment program. The effects of covariates on transition probabilities are assessed using a logit link function. To describe the time evolution of transition probabilities, we consider two modeling strategies. The first strategy is based on the concept of exchangeabiligy, whereas the second one is based on a first order Markov property. The deviance information criterion (DIC) measure is used to compare models with two different time dependent structures. The inferences are made using the Markov chain Monte Carlo technique. The developed methodology is applied to some real data.

Frequency Analysis of Snow depth Using Bayesian mixture distribution (Bayesian 혼합분포를 활용한 최심신적설량 빈도분석)

  • Kim, Ho Jun;Urnachimeg, Sumiya;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.136-136
    • /
    • 2020
  • 홍수와 가뭄은 우리나라에 대표적인 수재해로서 관련 연구도 활발히 진행되고 있다. 반면 겨울철에 발생하는 적설의 경우 발생빈도와 피해가 상대적으로 적었으며 관련 연구 또한 미비한 실정이다. 우리나라 일부 남부지방은 강우와 다르게 연중 눈이 내리지 않는 경우가 존재하며, 자료 중 '0'값을 가지게 된다. 이로 인해 최적분포형 선정 및 매개변수 추정에 어려움이 있으며, 특히 '0'값으로 인해 단일 확률분포를 이용한 빈도해석은 한계가 있다. 본 연구에서는 연중 눈이 내리지 않는 무적설량을 고려하기 위하여 두 가지 이상의 확률분포함수를 결합한 혼합분포함수를 개발하였다. Bayesian 기법을 이용하여 무강우의 기준이 되는 값(δ)을 매개변수로 고려하여 추정하였으며, 이에 따른 적설발생 평균확률(P을 Mixing Ratio로 고려하여 혼합분포함수를 제시하였다. 본 연구에서는 기상청 산하 관측소 중 20년 이상의 지점을 선정하여 최심신적설량을 활용하였으며, 빈도별 확률적설심을 산정하였다. 적합한 확률분포형 선정을 위해 먼저 Bayesian 기법으로 매개변수와 우도함수를 산정한 후 각 분포형의 BIC(bayesian information criterion)값을 비교하였다. 선정된 최적분포형에 대해 빈도분석을 실시하여 최심신적설량을 제시하였다. 추가적으로 무강우를 기존 기준인 '0'으로 고정하여 본 연구에서 제시한 결과 값과 비교하였다.

  • PDF

A Bayesian Approach to Gumbel Mixture Distribution for the Estimation of Parameter and its use to the Rainfall Frequency Analysis (Bayesian 기법을 이용한 혼합 Gumbel 분포 매개변수 추정 및 강우빈도해석 기법 개발)

  • Choi, Hong-Geun;Uranchimeg, Sumiya;Kim, Yong-Tak;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • More than half of annual rainfall occurs in summer season in Korea due to its climate condition and geographical location. A frequency analysis is mostly adopted for designing hydraulic structure under the such concentrated rainfall condition. Among the various distributions, univariate Gumbel distribution has been routinely used for rainfall frequency analysis in Korea. However, the distributional changes in extreme rainfall have been globally observed including Korea. More specifically, the univariate Gumbel distribution based rainfall frequency analysis is often fail to describe multimodal behaviors which are mainly influenced by distinct climate conditions during the wet season. In this context, we purposed a Gumbel mixture distribution based rainfall frequency analysis with a Bayesian framework, and further the results were compared to that of the univariate. It was found that the proposed model showed better performance in describing underlying distributions, leading to the lower Bayesian information criterion (BIC) values. The mixed Gumbel distribution was more robust for describing the upper tail of the distribution which playes a crucial role in estimating more reliable estimates of design rainfall uncertainty occurred by peak of upper tail than single Gumbel distribution. Therefore, it can be concluded that the mixed Gumbel distribution is more compatible for extreme frequency analysis rainfall data with two or more peaks on its distribution.

HMM Topology Optimization using Model Prior Estimation (모델의 사전 확률 추정을 이용한 HMM 구조의 최적화)

  • ;;Alain Biem;Jayashree Subrahmonia
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.325-327
    • /
    • 2001
  • 본 논문은 온라인 문자 인식을 연속 밀도 HMM의 구조의 최적화 문제를 다룬다. 최적이란 최소한의 모델 파라미터를 사용하여 최소한의 오류를 허용하는 것이라고 정의할 수 있다. 본 연구에서는 HMM 구조의 최적화를 위해 Bayesian 모델 선택 방법론을 사용한다. 먼저 잘 알려진 BIC(Bayesian Information Criterion)을 적용해보고, 그것을 HMM의 복잡한 구조에 적합하도록 본 논문에서 제안한 HBIC(HMM-Oriented BIC)와 비교해본다. BIC는 모델의 사전 확률 분포를 추정하지 않고 다변량 정규분포라고 가정하는데 비해 HBIC는 모델의 각 파라미터로부터 사전 확률을 추정한 후 그것들을 사용함으로써 더 좋은 결과를 얻도록 한다. 실험 결과 BIC와 HBIC 둘 다 기존 방법보다 모델의 파라미터 수를 현저히 감소시킴을 확인했고, HBIC가 BIC에 비해 더 적은 수의 파라미터를 사용해도 비슷한 인식률을 얻을 수 있었다.

  • PDF

Statistical analysis of KNHANES data with measurement error models

  • Hwang, Jinseub
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.773-779
    • /
    • 2015
  • We study a statistical analysis about the fifth wave data of the Korea National Health and Nutrition Examination Survey based on linear regression models with measurement errors. The data is obtained from a national population-based complex survey. To demonstrate the availability of measurement error models, two results between the general linear regression model and measurement error model are compared based on the model selection criteria which are Akaike information criterion and Bayesian information criterion. For our study, we use the simulation extrapolation algorithm for measurement error model and the jackknife method for the estimation of standard errors.

Optimal Network Defense Strategy Selection Based on Markov Bayesian Game

  • Wang, Zengguang;Lu, Yu;Li, Xi;Nie, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5631-5652
    • /
    • 2019
  • The existing defense strategy selection methods based on game theory basically select the optimal defense strategy in the form of mixed strategy. However, it is hard for network managers to understand and implement the defense strategy in this way. To address this problem, we constructed the incomplete information stochastic game model for the dynamic analysis to predict multi-stage attack-defense process by combining Bayesian game theory and the Markov decision-making method. In addition, the payoffs are quantified from the impact value of attack-defense actions. Based on previous statements, we designed an optimal defense strategy selection method. The optimal defense strategy is selected, which regards defense effectiveness as the criterion. The proposed method is feasibly verified via a representative experiment. Compared to the classical strategy selection methods based on the game theory, the proposed method can select the optimal strategy of the multi-stage attack-defense process in the form of pure strategy, which has been proved more operable than the compared ones.

A Study on Bayesian Approach of Software Stochastic Reliability Superposition Model using General Order Statistics (일반 순서 통계량을 이용한 소프트웨어 신뢰확률 중첩모형에 관한 베이지안 접근에 관한 연구)

  • Lee, Byeong-Su;Kim, Hui-Cheol;Baek, Su-Gi;Jeong, Gwan-Hui;Yun, Ju-Yong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2060-2071
    • /
    • 1999
  • The complicate software failure system is defined to the superposition of the points of failure from several component point process. Because the likelihood function is difficulty in computing, we consider Gibbs sampler using iteration sampling based method. For each observed failure epoch, we applied to latent variables that indicates with component of the superposition mode. For model selection, we explored the posterior Bayesian criterion and the sum of relative errors for the comparison simple pattern with superposition model. A numerical example with NHPP simulated data set applies the thinning method proposed by Lewis and Shedler[25] is given, we consider Goel-Okumoto model and Weibull model with GOS, inference of parameter is studied. Using the posterior Bayesian criterion and the sum of relative errors, as we would expect, the superposition model is best on model under diffuse priors.

  • PDF

Bayesian Analysis for the Difference of Exponential Means

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1067-1078
    • /
    • 2005
  • In this paper, we develop the noninformative priors for the exponential models when the parameter of interest is the difference of two means. We develop the first and second order matching priors. We reveal that the second order matching priors do not exist. It turns out that Jeffreys' prior does not satisfy the first order matching criterion. The Bayesian credible intervals based on the first order matching meet the frequentist target coverage probabilities much better than the frequentist intervals of Jeffreys' prior.

  • PDF