• Title/Summary/Keyword: Bayesian deep learning

Search Result 33, Processing Time 0.018 seconds

An Interpretable Log Anomaly System Using Bayesian Probability and Closed Sequence Pattern Mining (베이지안 확률 및 폐쇄 순차패턴 마이닝 방식을 이용한 설명가능한 로그 이상탐지 시스템)

  • Yun, Jiyoung;Shin, Gun-Yoon;Kim, Dong-Wook;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.77-87
    • /
    • 2021
  • With the development of the Internet and personal computers, various and complex attacks begin to emerge. As the attacks become more complex, signature-based detection become difficult. It leads to the research on behavior-based log anomaly detection. Recent work utilizes deep learning to learn the order and it shows good performance. Despite its good performance, it does not provide any explanation for prediction. The lack of explanation can occur difficulty of finding contamination of data or the vulnerability of the model itself. As a result, the users lose their reliability of the model. To address this problem, this work proposes an explainable log anomaly detection system. In this study, log parsing is the first to proceed. Afterward, sequential rules are extracted by Bayesian posterior probability. As a result, the "If condition then results, post-probability" type rule set is extracted. If the sample is matched to the ruleset, it is normal, otherwise, it is an anomaly. We utilize HDFS datasets for the experiment, resulting in F1score 92.7% in test dataset.

Active Vision from Image-Text Multimodal System Learning (능동 시각을 이용한 이미지-텍스트 다중 모달 체계 학습)

  • Kim, Jin-Hwa;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.795-800
    • /
    • 2016
  • In image classification, recent CNNs compete with human performance. However, there are limitations in more general recognition. Herein we deal with indoor images that contain too much information to be directly processed and require information reduction before recognition. To reduce the amount of data processing, typically variational inference or variational Bayesian methods are suggested for object detection. However, these methods suffer from the difficulty of marginalizing over the given space. In this study, we propose an image-text integrated recognition system using active vision based on Spatial Transformer Networks. The system attempts to efficiently sample a partial region of a given image for a given language information. Our experimental results demonstrate a significant improvement over traditional approaches. We also discuss the results of qualitative analysis of sampled images, model characteristics, and its limitations.

Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System (추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법)

  • Lee, O-Joun;You, Eun-Soon
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.119-142
    • /
    • 2015
  • With the explosive growth in the volume of information, Internet users are experiencing considerable difficulties in obtaining necessary information online. Against this backdrop, ever-greater importance is being placed on a recommender system that provides information catered to user preferences and tastes in an attempt to address issues associated with information overload. To this end, a number of techniques have been proposed, including content-based filtering (CBF), demographic filtering (DF) and collaborative filtering (CF). Among them, CBF and DF require external information and thus cannot be applied to a variety of domains. CF, on the other hand, is widely used since it is relatively free from the domain constraint. The CF technique is broadly classified into memory-based CF, model-based CF and hybrid CF. Model-based CF addresses the drawbacks of CF by considering the Bayesian model, clustering model or dependency network model. This filtering technique not only improves the sparsity and scalability issues but also boosts predictive performance. However, it involves expensive model-building and results in a tradeoff between performance and scalability. Such tradeoff is attributed to reduced coverage, which is a type of sparsity issues. In addition, expensive model-building may lead to performance instability since changes in the domain environment cannot be immediately incorporated into the model due to high costs involved. Cumulative changes in the domain environment that have failed to be reflected eventually undermine system performance. This study incorporates the Markov model of transition probabilities and the concept of fuzzy clustering with CBCF to propose predictive clustering-based CF (PCCF) that solves the issues of reduced coverage and of unstable performance. The method improves performance instability by tracking the changes in user preferences and bridging the gap between the static model and dynamic users. Furthermore, the issue of reduced coverage also improves by expanding the coverage based on transition probabilities and clustering probabilities. The proposed method consists of four processes. First, user preferences are normalized in preference clustering. Second, changes in user preferences are detected from review score entries during preference transition detection. Third, user propensities are normalized using patterns of changes (propensities) in user preferences in propensity clustering. Lastly, the preference prediction model is developed to predict user preferences for items during preference prediction. The proposed method has been validated by testing the robustness of performance instability and scalability-performance tradeoff. The initial test compared and analyzed the performance of individual recommender systems each enabled by IBCF, CBCF, ICFEC and PCCF under an environment where data sparsity had been minimized. The following test adjusted the optimal number of clusters in CBCF, ICFEC and PCCF for a comparative analysis of subsequent changes in the system performance. The test results revealed that the suggested method produced insignificant improvement in performance in comparison with the existing techniques. In addition, it failed to achieve significant improvement in the standard deviation that indicates the degree of data fluctuation. Notwithstanding, it resulted in marked improvement over the existing techniques in terms of range that indicates the level of performance fluctuation. The level of performance fluctuation before and after the model generation improved by 51.31% in the initial test. Then in the following test, there has been 36.05% improvement in the level of performance fluctuation driven by the changes in the number of clusters. This signifies that the proposed method, despite the slight performance improvement, clearly offers better performance stability compared to the existing techniques. Further research on this study will be directed toward enhancing the recommendation performance that failed to demonstrate significant improvement over the existing techniques. The future research will consider the introduction of a high-dimensional parameter-free clustering algorithm or deep learning-based model in order to improve performance in recommendations.