• Title/Summary/Keyword: Bayesian compressive sensing

Search Result 4, Processing Time 0.021 seconds

Primary user localization using Bayesian compressive sensing and path-loss exponent estimation for cognitive radio networks

  • Anh, Hoang;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2338-2356
    • /
    • 2013
  • In cognitive radio networks, acquiring the position information of the primary user is critical to the communication of the secondary user. Localization of primary users can help improve the efficiency with which the spectrum is reused, because the information can be used to avoid harmful interference to the network while simultaneity is exploited to improve the spectrum utilization. Despite its inherent inaccuracy, received signal strength based on range has been used as the standard tool for distance measurements in the location detection process. Most previous works have employed the path-loss propagation model with a fixed value of the path loss exponent. However, in actual environments, the path loss exponent for each channel is different. Moreover, due to the complexity of the radio channel, when the number of channel increases, a larger number of RSS measurements are needed, and this results in additional energy consumption. In this paper, to overcome this problem, we propose using the Bayesian compressive sensing method with a calibrated path loss exponent to improve the performance of the PU localization method.

A RSS-Based Localization for Multiple Modes using Bayesian Compressive Sensing with Path-Loss Estimation (전력 손실 지수 추정 기법과 베이지안 압축 센싱을 이용하는 수신신호 세기 기반의 위치 추정 기법)

  • Ahn, Tae-Joon;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • In Wireless Sensor Network(WSN)s, the detection of precise location of each node is essential for utilizing sensing data acquired from sensor nodes effectively. Among various location methods, the received signal strength(RSS) based localization scheme is mostly preferable in many applications because it can be easily implemented without any additional hardware cost. Since a RSS-based localization scheme is mainly affected by radio channel or obstacles such as building and mountain between two nodes, the localization error can be inevitable. To enhance the accuracy of localization in RSS-based localization scheme, a number of RSS measurements are needed, which results in the energy consumption. In this paper, a RSS based localization using Bayesian Compressive Sensing(BSS) with path-loss exponent estimation is proposed to improve the accuracy of localization in the energy-efficient way. In the propose scheme, we can increase the adaptative, reliability and accuracy of localization by estimating the path-loss exponents between nodes, and further we can enhance the energy efficiency by the compressive sensing. Through the simulation, it is shown that the proposed scheme can enhance the location accuracy of multiple unknown nodes with fewer RSS measurements and is robust against the channel variation.

Group-Sparse Channel Estimation using Bayesian Matching Pursuit for OFDM Systems

  • Liu, Yi;Mei, Wenbo;Du, Huiqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.583-599
    • /
    • 2015
  • We apply the Bayesian matching pursuit (BMP) algorithm to the estimation of time-frequency selective channels in orthogonal frequency division multiplexing (OFDM) systems. By exploiting prior statistics and sparse characteristics of propagation channels, the Bayesian method provides a more accurate and efficient detection of the channel status information (CSI) than do conventional sparse channel estimation methods that are based on compressive sensing (CS) technologies. Using a reasonable approximation of the system model and a skillfully designed pilot arrangement, the proposed estimation scheme is able to address the Doppler-induced inter-carrier interference (ICI) with a relatively low complexity. Moreover, to further reduce the computational cost of the channel estimation, we make some modifications to the BMP algorithm. The modified algorithm can make good use of the group-sparse structure of doubly selective channels and thus reconstruct the CSI more efficiently than does the original BMP algorithm, which treats the sparse signals in the conventional manner and ignores the specific structure of their sparsity patterns. Numerical results demonstrate that the proposed Bayesian estimation has a good performance over rapidly time-varying channels.

Compressive Sensing Recovery of Natural Images Using Smooth Residual Error Regularization (평활 잔차 오류 정규화를 통한 자연 영상의 압축센싱 복원)

  • Trinh, Chien Van;Dinh, Khanh Quoc;Nguyen, Viet Anh;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.209-220
    • /
    • 2014
  • Compressive Sensing (CS) is a new signal acquisition paradigm which enables sampling under Nyquist rate for a special kind of signal called sparse signal. There are plenty of CS recovery methods but their performance are still challenging, especially at a low sub-rate. For CS recovery of natural images, regularizations exploiting some prior information can be used in order to enhance CS performance. In this context, this paper addresses improving quality of reconstructed natural images based on Dantzig selector and smooth filters (i.e., Gaussian filter and nonlocal means filter) to generate a new regularization called smooth residual error regularization. Moreover, total variation has been proved for its success in preserving edge objects and boundary of reconstructed images. Therefore, effectiveness of the proposed regularization is verified by experimenting it using augmented Lagrangian total variation minimization. This framework is considered as a new CS recovery seeking smoothness in residual images. Experimental results demonstrate significant improvement of the proposed framework over some other CS recoveries both in subjective and objective qualities. In the best case, our algorithm gains up to 9.14 dB compared with the CS recovery using Bayesian framework.