• Title/Summary/Keyword: Bayesian Testing

Search Result 151, Processing Time 0.017 seconds

Bayesian Inference for Multinomial Group Testing

  • Heo, Tae-Young;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.81-92
    • /
    • 2007
  • This paper consider trinomial group testing concerned with classification of N given units into one of k disjoint categories. In this paper, we propose Bayesian inference for estimating individual category proportions using the trinomial group testing model proposed by Bar-Lev et al. (2005). We compared a relative efficience (RE) based on the mean squared error (MSE) of MLE and Bayes estimators with various prior information. The impact of different prior specifications on the estimates is also investigated using selected prior distribution. The impact of different priors on the Bayes estimates is modest when the sample size and group size we large.

Estimating the Failure Rate of a Large Scaled Software in Multiple Input Domain Testing (다중입력영역시험에서의 대형 소프트웨어 고장률 추정 연구)

  • 문숙경
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.3
    • /
    • pp.186-194
    • /
    • 2002
  • In this paper we introduce formulae for estimating the failure rate of a large scaled software by using the Bayesian rule when a black-box random testing which selects an element(test case) at random with equally likely probability, is performed. A program or software can be treated as a mathematical function with a well-defined (input)domain and range. For a large scaled software, their input domains can be partitioned into multiple subdomains and exhaustive testing is not generally practical. Testing is proceeding with selecting a subdomain, and then picking a test case from within the selected subdomain. Whether or not the proportion of selecting one of the subdomains is assumed probability, we developed the formulae either case by using Bayesian rule with gamma distribution as a prior distribution.

Default Bayesian testing for the bivariate normal correlation coefficient

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.1007-1016
    • /
    • 2011
  • This article deals with the problem of testing for the correlation coefficient in the bivariate normal distribution. We propose Bayesian hypothesis testing procedures for the bivariate normal correlation coefficient under the noninformative prior. The noninformative priors are usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. A simulation study and an example are provided.

Default Bayesian testing for the equality of the scale parameters of several inverted exponential distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.961-970
    • /
    • 2014
  • This article deals with the problem of testing the equality of the scale parameters of several inverted exponential distributions. We propose Bayesian hypothesis testing procedures for the equality of the scale parameters under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Default Bayesian testing equality of scale parameters in several inverse Gaussian distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.739-748
    • /
    • 2015
  • This paper deals with the problem of testing about the equality of the scale parameters in several inverse Gaussian distributions. We propose default Bayesian testing procedures for the equality of the shape parameters under the reference priors. The reference prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. Therefore we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Objective Bayesian multiple hypothesis testing for the shape parameter of generalized exponential distribution

  • Lee, Woo Dong;Kim, Dal Ho;Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.217-225
    • /
    • 2017
  • This article deals with the problem of multiple hypothesis testing for the shape parameter in the generalized exponential distribution. We propose Bayesian hypothesis testing procedures for multiple hypotheses of the shape parameter with the noninformative prior. The Bayes factor with the noninformative prior is not well defined. The reason is that the most of the noninformative prior can be improper. Therefore we study the default Bayesian multiple hypothesis testing methods using the fractional and intrinsic Bayes factors with the reference priors. Simulation study is performed and an example is given.

Default Bayesian hypothesis testing for the scale parameters in the half logistic distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.465-472
    • /
    • 2014
  • This article deals with the problem of testing the equality of the scale parameters in the half logistic distributions. We propose Bayesian hypothesis testing procedures for the equality of the scale parameters under the noninformative priors. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be dened up to a multiplicative constant. Thus we propose the default Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Default Bayesian one sided testing for the shape parameter in the log-logistic distribution

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1583-1592
    • /
    • 2015
  • This paper deals with the problem of testing on the shape parameter in the log-logistic distribution. We propose default Bayesian testing procedures for the shape parameter under the reference priors. The reference prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. We can solve the this problem by the intrinsic Bayes factor and the fractional Bayes factor. Therefore we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factors under the reference priors. Simulation study and an example are provided.

Default Bayesian testing for scale parameters in the log-logistic distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1501-1511
    • /
    • 2015
  • This paper deals with the problem of testing on the equality of the scale parameters in the log-logistic distributions. We propose default Bayesian testing procedures for the scale parameters under the reference priors. The reference prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. Therefore, we propose the default Bayesian testing procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the reference priors. To justify proposed procedures, a simulation study is provided and also, an example is given.

Objective Bayesian Testing for Effect Size in Paired Study

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1477-1489
    • /
    • 2008
  • This article deals with the problem of testing whether the effect size in paired study exists. We propose Bayesian hypothesis testing procedures for the effect size in paired study under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian hypothesis testing procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Simulation study and a real data example are provided.

  • PDF