• Title/Summary/Keyword: Bayesian Techniques

Search Result 167, Processing Time 0.029 seconds

Uncertainty analysis of the Hydrograph utilizing a Bayesian techniques (Bayesian 기법을 활용한 홍수수문곡선 불확실성 분석)

  • Kim, Tae-Jeong;Kim, Ki-Young;Park, Rae-Gun;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.528-528
    • /
    • 2016
  • 신뢰성 있는 수문순환모의를 위해서 다양한 수문모형이 사용되고 있다. 그 중 대표적인 수문모형인 강우-유출 모형은 유역에 발생한 강우에 반응하는 유출특성을 평가하는데 이용된다. 강우-유출 과정은 강우량, 유출량, 도달시간 및 토양수분 등과 연관된 매개변수들의 최적화 과정을 통해서 추정된다. 하지만 동일한 강우사상이라도 다양한 매개변수들로 인하여 상당히 다른 유출패턴을 나타내기 때문에 수문순환 과정을 정확히 모의하기 위해서 강우-유출 분석시 불확실성 분석이 필수적으로 요구된다. 불확실성 분석은 통계학에서도 쉽지 않은 연구내용으로서 가장 진보된 불확실성 분석기법인 Bayesian 기법은 매개변수의 추정과 불확실성 분석을 동시에 수행할 수 있는 방법으로 매개변수들은 사후분포(posterior distribution)로 귀결되며 최종적으로 확률분포형의 형태를 가진다. 본 연구에서는 국내외적으로 널리 사용되는 단기유출 모형 HEC-1 모형에 Bayesian 기법을 연계하여 대상유역의 도달시간, 저류상수 및 CN No. 최적화 및 불확실성 평가를 수행하였다. 연구결과 Bayesian 기법을 통한 매개변수 최적화 결과는 안정적인 수렴결과를 확인하였으며, 확률강우량을 입력자료로 사용하여 산정된 빈도별 홍수수분곡선의 불확실성 분석을 통하여 향후 수공구조물의 위험도 분석 및 수자원계획 수립시 유용한 자료로 사용될 것으로 판단된다.

  • PDF

Reliability analysis for fatigue damage of railway welded bogies using Bayesian update based inspection

  • Zuo, Fang-Jun;Li, Yan-Feng;Huang, Hong-Zhong
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • From the viewpoint of engineering applications, the prediction of the failure of bogies plays an important role in preventing the occurrence of fatigue. Fatigue is a complex phenomenon affected by many uncertainties (such as load, environment, geometrical and material properties, and so on). The key to predict fatigue damage accurately is how to quantify these uncertainties. A Bayesian model is used to account for the uncertainty of various sources when predicting fatigue damage of structural components. In spite of improvements in the design of fatigue-sensitive structures, periodic non-destructive inspections are required for components. With the help of modern nondestructive inspection techniques, the fatigue flaws can be detected for bogie structures, and fatigue reliability can be updated by using Bayesian theorem with inspection data. A practical fatigue analysis of welded bogies is utilized to testify the effectiveness of the proposed methods.

Bayesian Analysis for Multiple Change-point hazard Rate Models

  • Jeong, Kwangmo
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.801-812
    • /
    • 1999
  • Change-point hazard rate models arise for example in applying "burn-in" techniques to screen defective items and in studing times until undesirable side effects occur in clinical trials. Sometimes in screening defectives it might be sensible to model two stages of burn-in. In a clinical trial there might be an initial hazard rate for a side effect which after a period of time changes to an intermediate hazard rate before settling into a long term hazard rate. In this paper we consider the multiple change points hazard rate model. The classical approach's asymptotics can be poor for the small to all moderate sample sizes often encountered in practice. We propose a Bayesian approach avoiding asymptotics to provide more reliable inference conditional only upon the data actually observed. The Bayesian models can be fitted using simulation methods. Model comparison is made using recently developed Bayesian model selection criteria. The above methodology is applied to a generated data and to a generated data and the Lawless(1982) failure times of electrical insulation.

  • PDF

Bayesian Estimation for Inflection S-shaped Software Reliability Growth Model (변곡 S-형 소프트웨어 신뢰도성장모형의 베이지안 모수추정)

  • Kim, Hee-Soo;Lee, Chong-Hyung;Park, Dong-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.37 no.4
    • /
    • pp.16-22
    • /
    • 2009
  • The inflection S-shaped software reliability growth model (SRGM) proposed by Ohba(1984) is one of the most commonly used models and has been discussed by many authors. The main purpose of this paper is to estimate the parameters of Ohba's SRGM within the Bayesian framework by applying the Markov chain Monte Carlo techniques. While the maximum likelihood estimates for these parameters are well known, the Bayesian method for the inflection S-shaped SRGM have not been discussed in the literature. The proposed methods can be quite flexible depending on the choice of prior distributions for the parameters of interests. We also compare the Bayesian methods with the maximum likelihood method numerically based on the real data.

Bayesian updated correlation length of spatial concrete properties using limited data

  • Criel, Pieterjan;Caspeele, Robby;Taerwe, Luc
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.659-677
    • /
    • 2014
  • A Bayesian response surface updating procedure is applied in order to update the parameters of the covariance function of a random field for concrete properties based on a limited number of available measurements. Formulas as well as a numerical algorithm are presented in order to update the parameters of response surfaces using Markov Chain Monte Carlo simulations. The parameters of the covariance function are often based on some kind of expert judgment due the lack of sufficient measurement data. However, a Bayesian updating technique enables to estimate the parameters of the covariance function more rigorously and with less ambiguity. Prior information can be incorporated in the form of vague or informative priors. The proposed estimation procedure is evaluated through numerical simulations and compared to the commonly used least square method.

Nonlinear Multilayer Combining Techniques in Bayesian Equalizer Using Radial Basis Function Network (RBFN을 이용한 Bayesian Equalizer에서의 비선형 다층 결합 기법)

  • 최수용;고균병;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.452-460
    • /
    • 2003
  • In this paper, an equalizer(RNE) using nonlinear multilayer combining techniques in Bayesian equalizer with a structure of radial basis function network is proposed in order to simplify the structure and enhance the performance of the equalizer(RE) using a radial basis function network. The conventional RE Produces its output using linear combining the outputs of the basis functions in the hidden layer while the proposed RNE produces its output using nonlinear combining the outputs of the basis function in the first hidden layer. The nonlinear combiner is implemented by multilayer perceptrons(MLPs). In addition, as an infinite impulse response structure, the RNE with decision feedback equalizer (RNDFE) is proposed. The proposed equalizer has simpler structure and shows better performance than the conventional RE in terms of bit error probability and mean square error.

Automatic Sputum Color Image Segmentation for Lung Cancer Diagnosis

  • Taher, Fatma;Werghi, Naoufel;Al-Ahmad, Hussain
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.68-80
    • /
    • 2013
  • Lung cancer is considered to be the leading cause of cancer death worldwide. A technique commonly used consists of analyzing sputum images for detecting lung cancer cells. However, the analysis of sputum is time consuming and requires highly trained personnel to avoid errors. The manual screening of sputum samples has to be improved by using image processing techniques. In this paper we present a Computer Aided Diagnosis (CAD) system for early detection and diagnosis of lung cancer based on the analysis of the sputum color image with the aim to attain a high accuracy rate and to reduce the time consumed to analyze such sputum samples. In order to form general diagnostic rules, we present a framework for segmentation and extraction of sputum cells in sputum images using respectively, a Bayesian classification method followed by region detection and feature extraction techniques to determine the shape of the nuclei inside the sputum cells. The final results will be used for a (CAD) system for early detection of lung cancer. We analyzed the performance of a Bayesian classification with respect to the color space representation and quantification. Our methods were validated via a series of experimentation conducted with a data set of 100 images. Our evaluation criteria were based on sensitivity, specificity and accuracy.

The Bayesian Framework based on Graphics for the Behavior Profiling (행위 프로파일링을 위한 그래픽 기반의 베이지안 프레임워크)

  • 차병래
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.5
    • /
    • pp.69-78
    • /
    • 2004
  • The change of attack techniques paradigm was begun by fast extension of the latest Internet and new attack form appearing. But, Most intrusion detection systems detect only known attack type as IDS is doing based on misuse detection, and active correspondence is difficult in new attack. Therefore, to heighten detection rate for new attack pattern, the experiments to apply various techniques of anomaly detection are appearing. In this paper, we propose an behavior profiling method using Bayesian framework based on graphics from audit data and visualize behavior profile to detect/analyze anomaly behavior. We achieve simulation to translate host/network audit data into BF-XML which is behavior profile of semi-structured data type for anomaly detection and to visualize BF-XML as SVG.

Analyzing effect and importance of input predictors for urban streamflow prediction based on a Bayesian tree-based model

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.134-134
    • /
    • 2022
  • Streamflow forecasting plays a crucial role in water resource control, especially in highly urbanized areas that are very vulnerable to flooding during heavy rainfall event. In addition to providing the accurate prediction, the evaluation of effects and importance of the input predictors can contribute to water manager. Recently, machine learning techniques have applied their advantages for modeling complex and nonlinear hydrological processes. However, the techniques have not considered properly the importance and uncertainty of the predictor variables. To address these concerns, we applied the GA-BART, that integrates a genetic algorithm (GA) with the Bayesian additive regression tree (BART) model for hourly streamflow forecasting and analyzing input predictors. The Jungrang urban basin was selected as a case study and a database was established based on 39 heavy rainfall events during 2003 and 2020 from the rain gauges and monitoring stations. For the goal of this study, we used a combination of inputs that included the areal rainfall of the subbasins at current time step and previous time steps and water level and streamflow of the stations at time step for multistep-ahead streamflow predictions. An analysis of multiple datasets including different input predictors was performed to define the optimal set for streamflow forecasting. In addition, the GA-BART model could reasonably determine the relative importance of the input variables. The assessment might help water resource managers improve the accuracy of forecasts and early flood warnings in the basin.

  • PDF

Network Identification of Major Risk Factor Associated with Delirium by Bayesian Network (베이지안 네트워크를 활용한 정신장애 질병 섬망(delirium)의 주요 요인 네트워크 규명)

  • Lee, Jea-Young;Choi, Young-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.323-333
    • /
    • 2011
  • We analyzed using logistic to find factors with a mental disorder because logistic is the most efficient way assess risk factors. In this paper, we applied data mining techniques that are logistic, neural network, c5.0, cart and Bayesian network to delirium data. The Bayesian network method was chosen as the best model. When delirium data were applied to the Bayesian network, we determined the risk factors associated with delirium as well as identified the network between the risk factors.