• 제목/요약/키워드: Bayesian Procedure

검색결과 174건 처리시간 0.019초

A Study of Bayesian and Empirical Bayesian Prediction Analysis for the Rayleigh Model under the Random Censoring

  • Ko, Jeong-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • 제6권1호
    • /
    • pp.53-61
    • /
    • 1995
  • This paper deals with problems of predicting, based on the random censored sampling, a future observation and the p-th order statistic of n' future observations for the Rayleigh model. We consider the prediction intervals for the Rayleigh model with respect to an inverse gamma prior distribution. In additions, numerical examples are given in order to illustrate the proposed predictive procedure.

  • PDF

부적합률의 다중변화점분석을 위한 베이지안절차 (Bayesian Procedure for the Multiple Change Point Analysis of Fraction Nonconforming)

  • 김경숙;김희정;박정수;손영숙
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2006년도 춘계학술대회
    • /
    • pp.319-324
    • /
    • 2006
  • In this paper, we propose Bayesian procedure for the multiple change points analysis in a sequence of fractions nonconforming. We first compute the Bayes factor for detecting the existence of no change, a single change or multiple changes. The Gibbs sampler with the Metropolis-Hastings subchain is run to estimate parameters of the change point model, once the number of change points is identified. Finally, we apply the results developed in this paper to both a real and simulated data.

  • PDF

토빗회귀모형에서 베이지안 구간추정 (Bayesian Interval Estimation of Tobit Regression Model)

  • 이승천;최병수
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.737-746
    • /
    • 2013
  • Tobin (1958)에 의해 처음 소개된 절단 회귀모형에서 베이지안 추정은 최대가능도 추정보다 실제값에 가까운 것으로 알려져 있으나 베이지안 방법론이 구간추정 문제에 있어서도 성공적으로 작동할 수 있을 지에 대해서는 알려진 바가 없다. 일반적으로 베이지안 방법론에서 사전분포는 분석자의 사전정보를 반영하기 때문에 주관적인 분석이 될 수 밖에 없는데, 이렇게 주관적인 분석에서는 빈도학파들이 요구하는 기준을 따르기 어렵다. 그러나 무정보사전분포는 때때로 빈도학파적 특성을 갖는 베이지안 추론을 가능하게 한다. 본 연구에서는 절단 회귀모형에서 무정보사전분포에 의한 베이지안 신뢰구간의 빈도학파적 특성을 살펴보고 최대가능도 추정 신뢰구간과 포함확률을 비교한다. 이를 통해 최대가능도 추정의 표준오차가 과소 추정되고 있음 밝힌다.

2-모수 파레토분포의 객관적 베이지안 추정 (Objective Bayesian Estimation of Two-Parameter Pareto Distribution)

  • 손영숙
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.713-723
    • /
    • 2013
  • 본 연구에서는 2-모수 파레토분포에 대해 무정보사전분포인 준거사전분포의 가정 하에서 객관적 베이지안 모수추정 절차를 제안하였다. 베이지안 추정은 깁스샘플링에 의해서 수행된다. 깁스샘플러에서 모수생성하는 방법은 형태모수는 감마분포로부터 생성하고 척도모수는 적응기각표집 알고리즘에 의해 생성한다. 제안된 베이지안 모수추정 절차는 모의실험과 자료분석에서 기존의 추정방법들인 L-적률추정법, 최우추정법, 공액사전분포 하의 주관적 베이지안 모수추정법과 비교된다.

Probabilistic-based assessment of composite steel-concrete structures through an innovative framework

  • Matos, Jose C.;Valente, Isabel B.;Cruz, Paulo J.S.;Moreira, Vicente N.
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1345-1368
    • /
    • 2016
  • This paper presents the probabilistic-based assessment of composite steel-concrete structures through an innovative framework. This framework combines model identification and reliability assessment procedures. The paper starts by describing current structural assessment algorithms and the most relevant uncertainty sources. The developed model identification algorithm is then presented. During this procedure, the model parameters are automatically adjusted, so that the numerical results best fit the experimental data. Modelling and measurement errors are respectively incorporated in this algorithm. The reliability assessment procedure aims to assess the structure performance, considering randomness in model parameters. Since monitoring and characterization tests are common measures to control and acquire information about those parameters, a Bayesian inference procedure is incorporated to update the reliability assessment. The framework is then tested with a set of composite steel-concrete beams, which behavior is complex. The experimental tests, as well as the developed numerical model and the obtained results from the proposed framework, are respectively present.

Bayesian estimation of median household income for small areas with some longitudinal pattern

  • Lee, Jayoun;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권3호
    • /
    • pp.755-762
    • /
    • 2015
  • One of the main objectives of the U.S. Census Bureau is the proper estimation of median household income for small areas. These estimates have an important role in the formulation of various governmental decisions and policies. Since direct survey estimates are available annually for each state or county, it is desirable to exploit the longitudinal trend in income observations in the estimation procedure. In this study, we consider Fay-Herriot type small area models which include time-specific random effect to accommodate any unspecified time varying income pattern. Analysis is carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. We have evaluated our estimates by comparing those with the corresponding census estimates of 1999 using some commonly used comparison measures. It turns out that among three types of time-specific random effects the small area model with a time series random walk component provides estimates which are superior to both direct estimates and the Census Bureau estimates.

Nonparametric Bayesian Multiple Comparisons for Geometric Populations

  • Ali, M. Masoom;Cho, J.S.;Begum, Munni
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1129-1140
    • /
    • 2005
  • A nonparametric Bayesian method for calculating posterior probabilities of the multiple comparison problem on the parameters of several Geometric populations is presented. Bayesian multiple comparisons under two different prior/ likelihood combinations was studied by Gopalan and Berry(1998) using Dirichlet process priors. In this paper, we followed the same approach to calculate posterior probabilities for various hypotheses in a statistical experiment with a partition on the parameter space induced by equality and inequality relationships on the parameters of several geometric populations. This also leads to a simple method for obtaining pairwise comparisons of probability of successes. Gibbs sampling technique was used to evaluate the posterior probabilities of all possible hypotheses that are analytically intractable. A numerical example is given to illustrate the procedure.

  • PDF

The Effects of Human Resource Factors on Firm Efficiency: A Bayesian Stochastic Frontier Analysis

  • Shin, Sangwoo;Chang, Hyejung
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.292-302
    • /
    • 2018
  • This study proposes a Bayesian stochastic frontier model that is well-suited to productivity/efficiency analysis particularly using panel data. A unique feature of our proposal is that both production frontier and efficiency are estimable for each individual firm and their linkage to various firm characteristics enriches our understanding of the source of productivity/efficiency. Empirical application of the proposed analysis to Human Capital Corporate Panel data enables identification and quantification of the effects of Human Resource factors on firm efficiency in tandem with those of firm types on production frontier. A comprehensive description of the Markov Chain Monte Carlo estimation procedure is forwarded to facilitate the use of our proposed stochastic frontier analysis.

Classical and Bayesian studies for a new lifetime model in presence of type-II censoring

  • Goyal, Teena;Rai, Piyush K;Maury, Sandeep K
    • Communications for Statistical Applications and Methods
    • /
    • 제26권4호
    • /
    • pp.385-410
    • /
    • 2019
  • This paper proposes a new class of distribution using the concept of exponentiated of distribution function that provides a more flexible model to the baseline model. It also proposes a new lifetime distribution with different types of hazard rates such as decreasing, increasing and bathtub. After studying some basic statistical properties and parameter estimation procedure in case of complete sample observation, we have studied point and interval estimation procedures in presence of type-II censored samples under a classical as well as Bayesian paradigm. In the Bayesian paradigm, we considered a Gibbs sampler under Metropolis-Hasting for estimation under two different loss functions. After simulation studies, three different real datasets having various nature are considered for showing the suitability of the proposed model.

Simple Recursive Approach for Detecting Spatial Clusters

  • Kim Jeongjin;Chung Younshik;Ma Sungjoon;Yang Tae Young
    • Communications for Statistical Applications and Methods
    • /
    • 제12권1호
    • /
    • pp.207-216
    • /
    • 2005
  • A binary segmentation procedure is a simple recursive approach to detect clusters and provide inferences for the study space when the shape of the clusters and the number of clusters are unknown. The procedure involves a sequence of nested hypothesis tests of a single cluster versus a pair of distinct clusters. The size and the shape of the clusters evolve as the procedure proceeds. The procedure allows for various growth clusters and for arbitrary baseline densities which govern the form of the hypothesis tests. A real tree data is used to highlight the procedure.