• Title/Summary/Keyword: Bayesian Probabilistic

Search Result 192, Processing Time 0.03 seconds

Bayesian Model for Cost Estimation of Construction Projects

  • Kim, Sang-Yon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.1
    • /
    • pp.91-99
    • /
    • 2011
  • Bayesian network is a form of probabilistic graphical model. It incorporates human reasoning to deal with sparse data availability and to determine the probabilities of uncertain cases. In this research, bayesian network is adopted to model the problem of construction project cost. General information, time, cost, and material, the four main factors dominating the characteristic of construction costs, are incorporated into the model. This research presents verify a model that were conducted to illustrate the functionality and application of a decision support system for predicting the costs. The Markov Chain Monte Carlo (MCMC) method is applied to estimate parameter distributions. Furthermore, it is shown that not all the parameters are normally distributed. In addition, cost estimates based on the Gibbs output is performed. It can enhance the decision the decision-making process.

Motivation-Based Action Selection Mechanism with Bayesian Affordance Models for Intelligence Robot (지능로봇의 동기 기반 행동선택을 위한 베이지안 행동유발성 모델)

  • Son, Gwang-Hee;Lee, Sang-Hyoung;Huh, Il-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.264-266
    • /
    • 2009
  • A skill is defined as the special ability to do something well, especially as acquired by learning and practice. To learn a skill, a Bayesian network model for representing the skill is first learned. We will regard the Bayesian network for a skill as an affordance. We propose a soft Behavior Motivation(BM) switch as a method for ordering affordances to accomplish a task. Then, a skill is constructed as a combination of an affordance and a soft BM switch. To demonstrate the validity of our proposed method, some experiments were performed with GENIBO(Pet robot) performing a task using skills of Search-a-target-object, Approach-a-target-object, Push-up-in front of -a-target-object.

  • PDF

Geostatistics for Bayesian interpretation of geophysical data

  • Oh Seokhoon;Lee Duk Kee;Yang Junmo;Youn Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.340-343
    • /
    • 2003
  • This study presents a practical procedure for the Bayesian inversion of geophysical data by Markov chain Monte Carlo (MCMC) sampling and geostatistics. We have applied geostatistical techniques for the acquisition of prior model information, and then the MCMC method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter. This approach provides an effective way to treat Bayesian inversion of geophysical data and reduce the non-uniqueness by incorporating various prior information.

  • PDF

Sequential Bayesian Updating Module of Input Parameter Distributions for More Reliable Probabilistic Safety Assessment of HLW Radioactive Repository (고준위 방사성 폐기물 처분장 확률론적 안전성평가 신뢰도 제고를 위한 입력 파라미터 연속 베이지안 업데이팅 모듈 개발)

  • Lee, Youn-Myoung;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.179-194
    • /
    • 2020
  • A Bayesian approach was introduced to improve the belief of prior distributions of input parameters for the probabilistic safety assessment of radioactive waste repository. A GoldSim-based module was developed using the Markov chain Monte Carlo algorithm and implemented through GSTSPA (GoldSim Total System Performance Assessment), a GoldSim template for generic/site-specific safety assessment of the radioactive repository system. In this study, sequential Bayesian updating of prior distributions was comprehensively explained and used as a basis to conduct a reliable safety assessment of the repository. The prior distribution to three sequential posterior distributions for several selected parameters associated with nuclide transport in the fractured rock medium was updated with assumed likelihood functions. The process was demonstrated through a probabilistic safety assessment of the conceptual repository for illustrative purposes. Through this study, it was shown that insufficient observed data could enhance the belief of prior distributions for input parameter values commonly available, which are usually uncertain. This is particularly applicable for nuclide behavior in and around the repository system, which typically exhibited a long time span and wide modeling domain.

A Study on the Pattern Classificatiion of the EMG Signals Using Neural Network and Probabilistic Model (신경회로망과 확률모델을 이용한 근전도신호의 패턴분류에 관한 연구)

  • 장영건;권장우;장원환;장원석;홍성홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.831-841
    • /
    • 1991
  • A combined model of probabilistic and MLP(multi layer perceptron) model is proposed for the pattern classification of EMG( electromyogram) signals. The MLP model has a problem of not guaranteeing the global minima of error and different quality of approximations to Bayesian probabilities. The probabilistic model is, however, closely related to the estimation error of model parameters and the fidelity of assumptions. A proper combination of these will reduce the effects of the problems and be robust to input variations. Proposed model is able to get the MAP(maximum a posteriori probability) in the probabilistic model by estimating a priori probability distribution using the MLP model adaptively. This method minimize the error probability of the probabilistic model as long as the realization of the MLP model is optimal, and this is a good combination of the probabilistic model and the MLP model for the usage of MLP model reliability. Simulation results show the benefit of the proposed model compared to use the Mlp and the probabilistic model seperately and the average calculation time fro classification is about 50ms in the case of combined motion using an IBM PC 25 MHz 386model.

  • PDF

Differences by Selection Method for Exposure Factor Input Distribution for Use in Probabilistic Consumer Exposure Assessment

  • Kang, Sohyun;Kim, Jinho;Lim, Miyoung;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.5
    • /
    • pp.266-271
    • /
    • 2022
  • Background: The selection of distributions of input parameters is an important component in probabilistic exposure assessment. Goodness-of-fit (GOF) methods are used to determine the distribution of exposure factors. However, there are no clear guidelines for choosing an appropriate GOF method. Objectives: The outcomes of probabilistic consumer exposure assessment were compared by using five different GOF methods for the selection of input distributions: chi-squared test, Kolmogorov-Smirnov test (K-S), Anderson-Darling test (A-D), Akaike information criterion (AIC) and Bayesian information criterion (BIC). Methods: Individual exposures were estimated based on product usage factor combinations from 10,000 respondents. The distribution of individual exposure was considered as the true value of population exposures. Results: Among the five GOF methods, probabilistic exposure distributions using the A-D and K-S methods were similar to individual exposure estimations. Comparing the 95th percentiles of the probabilistic distributions and the individual estimations for 10 CPs, there were 0.73 to 1.92 times differences for the A-D method, and 0.73 to 1.60 times differences (excluding tire-shine spray) for the K-S method. Conclusions: There were significant differences in exposure assessment results among the selection of the GOF methods. Therefore, the GOF methods for probabilistic consumer exposure assessment should be carefully selected.

Bayesian structural damage detection of steel towers using measured modal parameters

  • Lam, Heung-Fai;Yang, Jiahua
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.935-956
    • /
    • 2015
  • Structural Health Monitoring (SHM) of steel towers has become a hot research topic. From the literature, it is impractical and impossible to develop a "general" method that can detect all kinds of damages for all types of structures. A practical method should make use of the characteristics of the type of structures and the kind of damages. This paper reports a feasibility study on the use of measured modal parameters for the detection of damaged braces of tower structures following the Bayesian probabilistic approach. A substructure-based structural model-updating scheme, which groups different parts of the target structure systematically and is specially designed for tower structures, is developed to identify the stiffness distributions of the target structure under the undamaged and possibly damaged conditions. By comparing the identified stiffness distributions, the damage locations and the corresponding damage extents can be detected. By following the Bayesian theory, the probability model of the uncertain parameters is derived. The most probable model of the steel tower can be obtained by maximizing the probability density function (PDF) of the model parameters. Experimental case studies were employed to verify the proposed method. The contributions of this paper are not only on the proposal of the substructure-based Bayesian model updating method but also on the verification of the proposed methodology through measured data from a scale model of transmission tower under laboratory conditions.

A hierarchical Bayesian model for spatial scaling method: Application to streamflow in the Great Lakes basin

  • Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.176-176
    • /
    • 2018
  • This study presents a regional, probabilistic framework for estimating streamflow via spatial scaling in the Great Lakes basin, which is the largest lake system in the world. The framework follows a two-fold strategy including (1) a quadratic-programming based optimization model a priori to explore the model structure, and (2) a time-varying hierarchical Bayesian model based on insights found in the optimization model. The proposed model is developed to explore three innovations in hierarchical modeling for reconstructing historical streamflow at ungaged sites: (1) information of physical characteristics is utilized in spatial scaling, (2) a time-varying approach is introduced based on climate information, and (3) heteroscedasticity in residual errors is considered to improve streamflow predictive distributions. The proposed model is developed and calibrated in a hierarchical Bayesian framework to pool regional information across sites and enhance regionalization skill. The model is validated in a cross-validation framework along with four simpler nested formulations and the optimization model to confirm specific hypotheses embedded in the full model structure. The nested models assume a similar hierarchical Bayesian structure to our proposed model with their own set of simplifications and omissions. Results suggest that each of three innovations improve historical out-of-sample streamflow reconstructions although these improvements vary corrsponding to each innovation. Finally, we conclude with a discussion of possible model improvements considered by additional model structure and covariates.

  • PDF