• 제목/요약/키워드: Bayesian Posterior Probability

검색결과 123건 처리시간 0.029초

SOM의 통계적 특성과 다중 스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할 (Texture Segmentation Using Statistical Characteristics of SOM and Multiscale Bayesian Image Segmentation Technique)

  • 김태형;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.43-54
    • /
    • 2005
  • 이본 논문에서는 Bayesian 영상 분할법과 SOM(Self Organization feature Map)을 이용한 텍스쳐(Texture) 분할 방법을 제안한다. SOM의 입력으로 다중 스케일에서의 웨이블릿 계수를 사용하고, 훈련된 SOM으로부터 관측 데이터에 대한 우도(尤度, likelihood)와 사후확률을 구하는 방법을 제시한다. 훈련된 SOM들로부터 구한 사후확률과 MAP(Maximum A Posterior) 분류법을 이용하여 텍스쳐 분할을 얻는다. 그리고 문맥 정보를 이용하여 텍스쳐 분할 결과를 개선하였다. 제안 방법은 HMT(Hidden Markov Tree)을 이용한 텍스쳐 분할보다 더 우수한 결과를 보여준다. 또한 SOM과 HMTseg라고 불리는 다중스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할 결과는 HMT와 HMTseg을 이용한 결과보다 더 우수한 성능을 보여준다.

Estimation of Geometric Mean for k Exponential Parameters Using a Probability Matching Prior

  • Kim, Hea-Jung;Kim, Dae Hwang
    • Communications for Statistical Applications and Methods
    • /
    • 제10권1호
    • /
    • pp.1-9
    • /
    • 2003
  • In this article, we consider a Bayesian estimation method for the geometric mean of $textsc{k}$ exponential parameters, Using the Tibshirani's orthogonal parameterization, we suggest an invariant prior distribution of the $textsc{k}$ parameters. It is seen that the prior, probability matching prior, is better than the uniform prior in the sense of correct frequentist coverage probability of the posterior quantile. Then a weighted Monte Carlo method is developed to approximate the posterior distribution of the mean. The method is easily implemented and provides posterior mean and HPD(Highest Posterior Density) interval for the geometric mean. A simulation study is given to illustrates the efficiency of the method.

데이터마이닝을 위한 사후확률 정보엔트로피 기반 군집화알고리즘 (Clustering Algorithm for Data Mining using Posterior Probability-based Information Entropy)

  • 박인규
    • 디지털융복합연구
    • /
    • 제12권12호
    • /
    • pp.293-301
    • /
    • 2014
  • 본 논문에서는 데이터 마이닝에 필요한 클러스터링과정에서 불필요한 정보를 감축하기 위하여 베이지언 사후확률의 신뢰도를 이용한 새로운 척도를 제안한다. 데이터 감축을 위한 속성의 중요도가 클러스터링의 결과에 지배적이기 때문에 많은 속성의 변별력을 향상시키기 위하여 사후확률의 신뢰도에 정보 엔트로피를 적용하였다. 제안된 사후확률을 기반으로 한 러프 엔트로피 척도에 의한 속성의 신뢰도의 중복성은 엔트로피의 자연로그에 의하여 상당히 줄어든다. 따라서 제안된 척도에 의하여 생성된 군집화 알고리즘은 속성값의 변별력을 향상시켜 기존의 리덕트를 최소화하였고, 이는 분할의 효율성을 향상시킬 수 있었다. 제안된 알고리즘의 검증을 위해 패턴분류 문제에 적용되는 ACME 데이터에 대하여 속성간의 변별력, 분할결과에 따른 분할의 순정도를 기존의 알고리즘과 비교 분석하였다.

Posterior density estimation for structural parameters using improved differential evolution adaptive Metropolis algorithm

  • Zhou, Jin;Mita, Akira;Mei, Liu
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.735-749
    • /
    • 2015
  • The major difficulty of using Bayesian probabilistic inference for system identification is to obtain the posterior probability density of parameters conditioned by the measured response. The posterior density of structural parameters indicates how plausible each model is when considering the uncertainty of prediction errors. The Markov chain Monte Carlo (MCMC) method is a widespread medium for posterior inference but its convergence is often slow. The differential evolution adaptive Metropolis-Hasting (DREAM) algorithm boasts a population-based mechanism, which nms multiple different Markov chains simultaneously, and a global optimum exploration ability. This paper proposes an improved differential evolution adaptive Metropolis-Hasting algorithm (IDREAM) strategy to estimate the posterior density of structural parameters. The main benefit of IDREAM is its efficient MCMC simulation through its use of the adaptive Metropolis (AM) method with a mutation strategy for ensuring quick convergence and robust solutions. Its effectiveness was demonstrated in simulations on identifying the structural parameters with limited output data and noise polluted measurements.

모바일 감시 로봇을 위한 실시간 움직임 추정 알고리즘 (Real-Time Motion Estimation Algorithm for Mobile Surveillance Robot)

  • 한철훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.311-316
    • /
    • 2009
  • 본 논문에서는 파티클 필터(Particle Filter)를 사용한 모바일 감시 로봇을 위한 실시간 움직임 추정 알고리즘을 제안한다. 파티클 필터는 몬테카를로(Monte Carlo) 샘플링 방법을 기반으로 사전분포확률(Prior distribution probability)와 사후분포확률(Posterior distribution probability)을 가지는 베이지안 조건 확률 모델(Bayesian conditional probabilities model)을 사용하는 방법이다. 그러나 대부분의 파티클 필터에서는 초기 확률밀도(Prior probability density)를 임의로 정의하여 사용하지만, 본 논문에서는 Sum of Absolute Difference (SAD)를 이용하여 초기 확률밀도를 구하고, 이를 파티클 필터에 적용하여 모바일 감시 로봇 환경에서 임의로 움직이는 물체를 강인하게 실시간으로 추정하고 추적하는 시스템을 구현하였다.

Bayesian multiple comparisons in Freund's bivariate exponential populations with type I censored data

  • Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권3호
    • /
    • pp.569-574
    • /
    • 2010
  • We consider two components system which have Freund's bivariate exponential model. In this case, Bayesian multiple comparisons procedure for failure rates is sug-gested in K Freund's bivariate exponential populations. Here we assume that the com-ponents enter the study at random over time and the analysis is carried out at some prespeci ed time. We derive fractional Bayes factor for all comparisons under non- informative priors for the parameters and calculate the posterior probabilities for all hypotheses. And we select a hypotheses which has the highest posterior probability as best model. Finally, we give a numerical examples to illustrate our procedure.

Independent Testing in Marshall and Olkin's Bivariate Exponential Model Using Fractional Bayes Factor Under Bivariate Type I Censorship

  • Cho, Kil-Ho;Cho, Jang-Sik;Choi, Seung-Bae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1391-1396
    • /
    • 2008
  • In this paper, we consider two components system which the lifetimes have Marshall and Olkin's bivariate exponential model with bivariate type I censored data. We propose a Bayesian independent test procedure for above model using fractional Bayes factor method by O'Hagan based on improper prior distributions. And we compute the fractional Bayes factor and the posterior probabilities for the hypotheses, respectively. Also we select a hypothesis which has the largest posterior probability. Finally a numerical example is given to illustrate our Bayesian testing procedure.

  • PDF

베이지안 방법을 이용한 우리나라 강수특성(1954-2007)의 변화시점 및 변화유형 분석 (Change-point and Change Pattern of Precipitation Characteristics using Bayesian Method over South Korea from 1954 to 2007)

  • 김찬수;서명석
    • 대기
    • /
    • 제19권2호
    • /
    • pp.199-211
    • /
    • 2009
  • In this paper, we examine the multiple change-point and change pattern in the 54 years (1954-2007) time series of the annual and the heavy precipitation characteristics (amount, days and intensity) averaged over South Korea. A Bayesian approach is used for detecting of mean and/or variance changes in a sequence of independent univariate normal observations. Using non-informative priors for the parameters, the Bayesian model selection is performed by the posterior probability through the intrinsic Bayes factor of Berger and Pericchi (1996). To investigate the significance of the changes in the precipitation characteristics between before and after the change-point, the posterior probability and 90% highest posterior density credible intervals are examined. The results showed that no significant changes have occurred in the annual precipitation characteristics (amount, days and intensity) and the heavy precipitation intensity. On the other hand, a statistically significant single change has occurred around 1996 or 1997 in the heavy precipitation days and amount. The heavy precipitation amount and days have increased after the change-point but no changes in the variances.

Distance between the Distributions of the P-value and the Lower Bound of the Posterior Probability

  • Oh, Hyun-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제6권1호
    • /
    • pp.237-249
    • /
    • 1999
  • It has been issued that the irreconcilability of the classical test for a point null and standard Bayesian formulation for testing such a point null. The infimum of the posterior probability of the null hypothesis is used as measure of evidence against the null hypothesis in Bayesian approach; here the infimum is over the family of priors on the alternative hypotheses which includes all density that are a priori reasonable. For iid observations from a multivariate normal distribution in $\textit{p}$ dimensions with an unknown mean and a covariance matrix propotional to the Identity we consider the difference and the Wolfowitz distance of the distributions of the P-value and the lower bound of the posterior probability over the family of all normal priors. The Wolfowitz distance is interpreted as the average difference of the quantiles of the two distrbutions.

  • PDF