• Title/Summary/Keyword: Bayesian Model Selection

Search Result 160, Processing Time 0.027 seconds

Inferential Problems in Bayesian Logistic Regression Models (베이지안 로지스틱 회귀모형에서의 추론에 대한 연구)

  • Hwang, Jin-Soo;Kang, Sung-Chan
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1149-1160
    • /
    • 2011
  • Model selection and hypothesis testing problems in Bayesian inference are still debated between scholars. Bayesian factors traditionally used as a criterion in Bayesian hypothesis testing and model selection, are easy to understand but sometimes hard to compute. In addition, there are other model selection criterions such as DIC(Deviance Information Criterion) by Spiegelhalter et al. (2002) and Bayesian P-values for testing. In this paper, we briefly introduce the Bayesian hypothesis testing and model selection procedure. In addition we have applied a Bayesian inference to Swiss banknote data by a fitting logistic regression model and computing several test statistics to see if they provide consistent results.

On loss functions for model selection in wavelet based Bayesian method

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1191-1197
    • /
    • 2009
  • Most Bayesian approaches to model selection of wavelet analysis have drawbacks that computational cost is expensive to obtain accuracy for the fitted unknown function. To overcome the drawback, this article introduces loss functions which are criteria for level dependent threshold selection in wavelet based Bayesian methods with arbitrary size and regular design points. We demonstrate the utility of these criteria by four test functions and real data.

  • PDF

Bayesian estimation for finite population proportion under selection bias via surrogate samples

  • Choi, Seong Mi;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1543-1550
    • /
    • 2013
  • In this paper, we study Bayesian estimation for the finite population proportion in binary data under selection bias. We use a Bayesian nonignorable selection model to accommodate the selection mechanism. We compare four possible estimators of the finite population proportions based on data analysis as well as Monte Carlo simulation. It turns out that nonignorable selection model might be useful for weekly biased samples.

Analysis of Client Propensity in Cyber Counseling Using Bayesian Variable Selection

  • Pi, Su-Young
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.277-281
    • /
    • 2006
  • Cyber counseling, one of the most compatible type of consultation for the information society, enables people to reveal their mental agonies and private problems anonymously, since it does not require face-to-face interview between a counsellor and a client. However, there are few cyber counseling centers which provide high quality and trustworthy service, although the number of cyber counseling center has highly increased. Therefore, this paper is intended to enable an appropriate consultation for each client by analyzing client propensity using Bayesian variable selection. Bayesian variable selection is superior to stepwise regression analysis method in finding out a regression model. Stepwise regression analysis method, which has been generally used to analyze individual propensity in linear regression model, is not efficient since it is hard to select a proper model for its own defects. In this paper, based on the case database of current cyber counseling centers in the web, we will analyze clients' propensities using Bayesian variable selection to enable individually target counseling and to activate cyber counseling programs.

Comparing Bayesian model selection with a frequentist approach using iterative method of smoothing residuals

  • Koo, Hanwool;Shafieloo, Arman;Keeley, Ryan E.;L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2021
  • We have developed a frequentist approach for model selection which determines consistency of a cosmological model and the data using the distribution of likelihoods from the iterative smoothing method. Using this approach, we have shown how confidently we can distinguish different models without comparison with one another. In this current work, we compare our approach with conventional Bayesian approach based on estimation of Bayesian evidence using nested sampling for the purpose of model selection. We use simulated future Roman (formerly WFIRST)-like type Ia supernovae data in our analysis. We discuss limits of the Bayesian approach for model selection and display how our proposed frequentist approach, if implemented appropriately, can perform better in falsification of individual models.

  • PDF

Bayesian Model Selection in Weibull Populations

  • Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1123-1134
    • /
    • 2007
  • This article addresses the problem of testing whether the shape parameters in k independent Weibull populations are equal. We propose a Bayesian model selection procedure for equality of the shape parameters. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian model selection procedure based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Simulation study and a real example are provided.

  • PDF

Estimating dose-response curves using splines: a nonparametric Bayesian knot selection method

  • Lee, Jiwon;Kim, Yongku;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.287-299
    • /
    • 2022
  • In radiation epidemiology, the excess relative risk (ERR) model is used to determine the dose-response relationship. In general, the dose-response relationship for the ERR model is assumed to be linear, linear-quadratic, linear-threshold, quadratic, and so on. However, since none of these functions dominate other functions for expressing the dose-response relationship, a Bayesian semiparametric method using splines has recently been proposed. Thus, we improve the Bayesian semiparametric method for the selection of the tuning parameters for splines as the number and location of knots using a Bayesian knot selection method. Equally spaced knots cannot capture the characteristic of radiation exposed dose distribution which is highly skewed in general. Therefore, we propose a nonparametric Bayesian knot selection method based on a Dirichlet process mixture model. Inference of the spline coefficients after obtaining the number and location of knots is performed in the Bayesian framework. We apply this approach to the life span study cohort data from the radiation effects research foundation in Japan, and the results illustrate that the proposed method provides competitive curve estimates for the dose-response curve and relatively stable credible intervals for the curve.

Bayesian Analysis of Software Reliability Growth Model with Negative Binomial Information (음이항분포 정보를 가진 베이지안 소프트웨어 신뢰도 성장모형에 관한 연구)

  • Kim, Hui-Cheol;Park, Jong-Gu;Lee, Byeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.852-861
    • /
    • 2000
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals betwewn software failures. In this paper, using priors for the number of fault with the negative binomial distribution nd the error rate with gamma distribution, Bayesian inference and model selection method for Jelinski-Moranda and Goel-Okumoto and Schick-Wolverton models in software reliability. For model selection, we explored the sum of the relative error, Braun statistic and median variation. In Bayesian computation process, we could avoid the multiple integration by the use of Gibbs sampling, which is a kind of Markov Chain Monte Carolo method to compute the posterior distribution. Using simulated data, Bayesian inference and model selection is studied.

  • PDF

Sensitivity analysis in Bayesian nonignorable selection model for binary responses

  • Choi, Seong Mi;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.187-194
    • /
    • 2014
  • We consider a Bayesian nonignorable selection model to accommodate the selection bias. Markov chain Monte Carlo methods is known to be very useful to fit the nonignorable selection model. However, sensitivity to prior assumptions on parameters for selection mechanism is a potential problem. To quantify the sensitivity to prior assumption, the deviance information criterion and the conditional predictive ordinate are used to compare the goodness-of-fit under two different prior specifications. It turns out that the 'MLE' prior gives better fit than the 'uniform' prior in viewpoints of goodness-of-fit measures.

A Bayesian Approach for Record Value Statistics Model Using Nonhomogeneous Poisson Process

  • Kiheon Choi;Hee chual Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.259-269
    • /
    • 1997
  • Bayesian inference for a record value statistics(RVS) model of nonhomogeneous Poisson process is considered. We seal with Bayesian inference for double exponential, Gamma, Rayleigh, Gumble RVS models using Gibbs sampling and Metropolis algorithm and also explore Bayesian computation and model selection.

  • PDF