• Title/Summary/Keyword: Bayesian Linear Regression

Search Result 72, Processing Time 0.017 seconds

Genomic partitioning of growth traits using a high-density single nucleotide polymorphism array in Hanwoo (Korean cattle)

  • Park, Mi Na;Seo, Dongwon;Chung, Ki-Yong;Lee, Soo-Hyun;Chung, Yoon-Ji;Lee, Hyo-Jun;Lee, Jun-Heon;Park, Byoungho;Choi, Tae-Jeong;Lee, Seung-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1558-1565
    • /
    • 2020
  • Objective: The objective of this study was to characterize the number of loci affecting growth traits and the distribution of single nucleotide polymorphism (SNP) effects on growth traits, and to understand the genetic architecture for growth traits in Hanwoo (Korean cattle) using genome-wide association study (GWAS), genomic partitioning, and hierarchical Bayesian mixture models. Methods: GWAS: A single-marker regression-based mixed model was used to test the association between SNPs and causal variants. A genotype relationship matrix was fitted as a random effect in this linear mixed model to correct the genetic structure of a sire family. Genomic restricted maximum likelihood and BayesR: A priori information included setting the fixed additive genetic variance to a pre-specified value; the first mixture component was set to zero, the second to 0.0001×σ2g, the third 0.001×σ2g, and the fourth to 0.01×σ2g. BayesR fixed a priori information was not more than 1% of the genetic variance for each of the SNPs affecting the mixed distribution. Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 14 (BTA14) and 3 had a moderate effect that may contain causal variants for body weight at 6, 12, 18, and 24 months. This genomic region explained approximately 10% of the variance against total additive genetic variance and body weight heritability at 12, 18, and 24 months. BayesR identified the exact genomic region containing causal SNPs on BTA14, 3, and 22. However, the genetic variance explained by each chromosome or SNP was estimated to be very small compared to the total additive genetic variance. Causal SNPs for growth trait on BTA14 explained only 0.04% to 0.5% of the genetic variance Conclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other loci with small effects on growth traits at different ages were also identified.

Allometric equation for estimating aboveground biomass of Acacia-Commiphora forest, southern Ethiopia

  • Wondimagegn Amanuel;Chala Tadesse;Moges Molla;Desalegn Getinet;Zenebe Mekonnen
    • Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.196-206
    • /
    • 2024
  • Background: Most of the biomass equations were developed using sample trees collected mainly from pan-tropical and tropical regions that may over- or underestimate biomass. Site-specific models would improve the accuracy of the biomass estimates and enhance the country's measurement, reporting, and verification activities. The aim of the study is to develop site-specific biomass estimation models and validate and evaluate the existing generic models developed for pan-tropical forest and newly developed allometric models. Total of 140 trees was harvested from each diameter class biomass model development. Data was analyzed using SAS procedures. All relevant statistical tests (normality, multicollinearity, and heteroscedasticity) were performed. Data was transformed to logarithmic functions and multiple linear regression techniques were used to develop model to estimate aboveground biomass (AGB). The root mean square error (RMSE) was used for measuring model bias, precision, and accuracy. The coefficient of determination (R2 and adjusted [adj]-R2), the Akaike Information Criterion (AIC) and the Schwarz Bayesian information Criterion was employed to select most appropriate models. Results: For the general total AGB models, adj-R2 ranged from 0.71 to 0.85, and model 9 with diameter at stump height at 10 cm (DSH10), ρ and crown width (CW) as predictor variables, performed best according to RMSE and AIC. For the merchantable stem models, adj-R2 varied from 0.73 to 0.82, and model 8) with combination of ρ, diameter at breast height and height (H), CW and DSH10 as predictor variables, was best in terms of RMSE and AIC. The results showed that a best-fit model for above-ground biomass of tree components was developed. AGBStem = exp {-1.8296 + 0.4814 natural logarithm (Ln) (ρD2H) + 0.1751 Ln (CW) + 0.4059 Ln (DSH30)} AGBBranch = exp {-131.6 + 15.0013 Ln (ρD2H) + 13.176 Ln (CW) + 21.8506 Ln (DSH30)} AGBFoliage = exp {-0.9496 + 0.5282 Ln (DSH30) + 2.3492 Ln (ρ) + 0.4286 Ln (CW)} AGBTotal = exp {-1.8245 + 1.4358 Ln (DSH30) + 1.9921 Ln (ρ) + 0.6154 Ln (CW)} Conclusions: The results demonstrated that the development of local models derived from an appropriate sample of representative species can greatly improve the estimation of total AGB.