• Title/Summary/Keyword: Bayesian Information

Search Result 1,222, Processing Time 0.019 seconds

A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis (텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석)

  • Kam, Miah;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.53-77
    • /
    • 2012
  • This study analyses the difference of contents and tones of arguments among three Korean major newspapers, the Kyunghyang Shinmoon, the HanKyoreh, and the Dong-A Ilbo. It is commonly accepted that newspapers in Korea explicitly deliver their own tone of arguments when they talk about some sensitive issues and topics. It could be controversial if readers of newspapers read the news without being aware of the type of tones of arguments because the contents and the tones of arguments can affect readers easily. Thus it is very desirable to have a new tool that can inform the readers of what tone of argument a newspaper has. This study presents the results of clustering and classification techniques as part of text mining analysis. We focus on six main subjects such as Culture, Politics, International, Editorial-opinion, Eco-business and National issues in newspapers, and attempt to identify differences and similarities among the newspapers. The basic unit of text mining analysis is a paragraph of news articles. This study uses a keyword-network analysis tool and visualizes relationships among keywords to make it easier to see the differences. Newspaper articles were gathered from KINDS, the Korean integrated news database system. KINDS preserves news articles of the Kyunghyang Shinmun, the HanKyoreh and the Dong-A Ilbo and these are open to the public. This study used these three Korean major newspapers from KINDS. About 3,030 articles from 2008 to 2012 were used. International, national issues and politics sections were gathered with some specific issues. The International section was collected with the keyword of 'Nuclear weapon of North Korea.' The National issues section was collected with the keyword of '4-major-river.' The Politics section was collected with the keyword of 'Tonghap-Jinbo Dang.' All of the articles from April 2012 to May 2012 of Eco-business, Culture and Editorial-opinion sections were also collected. All of the collected data were handled and edited into paragraphs. We got rid of stop-words using the Lucene Korean Module. We calculated keyword co-occurrence counts from the paired co-occurrence list of keywords in a paragraph. We made a co-occurrence matrix from the list. Once the co-occurrence matrix was built, we used the Cosine coefficient matrix as input for PFNet(Pathfinder Network). In order to analyze these three newspapers and find out the significant keywords in each paper, we analyzed the list of 10 highest frequency keywords and keyword-networks of 20 highest ranking frequency keywords to closely examine the relationships and show the detailed network map among keywords. We used NodeXL software to visualize the PFNet. After drawing all the networks, we compared the results with the classification results. Classification was firstly handled to identify how the tone of argument of a newspaper is different from others. Then, to analyze tones of arguments, all the paragraphs were divided into two types of tones, Positive tone and Negative tone. To identify and classify all of the tones of paragraphs and articles we had collected, supervised learning technique was used. The Na$\ddot{i}$ve Bayesian classifier algorithm provided in the MALLET package was used to classify all the paragraphs in articles. After classification, Precision, Recall and F-value were used to evaluate the results of classification. Based on the results of this study, three subjects such as Culture, Eco-business and Politics showed some differences in contents and tones of arguments among these three newspapers. In addition, for the National issues, tones of arguments on 4-major-rivers project were different from each other. It seems three newspapers have their own specific tone of argument in those sections. And keyword-networks showed different shapes with each other in the same period in the same section. It means that frequently appeared keywords in articles are different and their contents are comprised with different keywords. And the Positive-Negative classification showed the possibility of classifying newspapers' tones of arguments compared to others. These results indicate that the approach in this study is promising to be extended as a new tool to identify the different tones of arguments of newspapers.

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.