• Title/Summary/Keyword: Bayesian HEC-1

Search Result 7, Processing Time 0.023 seconds

Uncertainty Assessment of Single Event Rainfall-Runoff Model Using Bayesian Model (Bayesian 모형을 이용한 단일사상 강우-유출 모형의 불확실성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok;Na, Bong-Kil
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.505-516
    • /
    • 2012
  • The study applies a hydrologic simulation model, HEC-1 developed by Hydrologic Engineering Center to Daecheong dam watershed for modeling hourly inflows of Daecheong dam. Although the HEC-1 model provides an automatic optimization technique for some of the parameters, the built-in optimization model is not sufficient in estimating reliable parameters. In particular, the optimization model often fails to estimate the parameters when a large number of parameters exist. In this regard, a main objective of this study is to develop Bayesian Markov Chain Monte Carlo simulation based HEC-1 model (BHEC-1). The Clark IUH method for transformation of precipitation excess to runoff and the soil conservation service runoff curve method for abstractions were used in Bayesian Monte Carlo simulation. Simulations of runoff at the Daecheong station in the HEC-1 model under Bayesian optimization scheme allow the posterior probability distributions of the hydrograph thus providing uncertainties in rainfall-runoff process. The proposed model showed a powerful performance in terms of estimating model parameters and deriving full uncertainties so that the model can be applied to various hydrologic problems such as frequency curve derivation, dam risk analysis and climate change study.

Bayesian parameter estimation of Clark unit hydrograph using multiple rainfall-runoff data (다중 강우유출자료를 이용한 Clark 단위도의 Bayesian 매개변수 추정)

  • Kim, Jin-Young;Kwon, Duk-Soon;Bae, Deg-Hyo;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.383-393
    • /
    • 2020
  • The main objective of this study is to provide a robust model for estimating parameters of the Clark unit hydrograph (UH) using the observed rainfall-runoff data in the Soyangang dam basin. In general, HEC-1 and HEC-HMS models, developed by the Hydrologic Engineering Center, have been widely used to optimize the parameters in Korea. However, these models are heavily reliant on the objective function and sample size during the optimization process. Moreover, the optimization process is carried out on the basis of single rainfall-runoff data, and the process is repeated for other events. Their averaged values over different parameter sets are usually used for practical purposes, leading to difficulties in the accurate simulation of discharge. In this sense, this paper proposed a hierarchical Bayesian model for estimating parameters of the Clark UH model. The proposed model clearly showed better performance in terms of Bayesian inference criterion (BIC). Furthermore, the result of this study reveals that the proposed model can also be applied to different hydrologic fields such as dam design and design flood estimation, including parameter estimation for the probable maximum flood (PMF).

Improvement of Hydrologic Dam Risk Analysis Model Considering Uncertainty of Hydrologic Analysis Process (수문해석과정의 불확실성을 고려한 수문학적 댐 위험도 해석 기법 개선)

  • Na, Bong-Kil;Kim, Jin-Young;Kwon, Hyun-Han;Lim, Jeong-Yeul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.853-865
    • /
    • 2014
  • Hydrologic dam risk analysis depends on complex hydrologic analyses in that probabilistic relationship need to be established to quantify various uncertainties associated modeling process and inputs. However, the systematic approaches to uncertainty analysis for hydrologic risk analysis have not been addressed yet. In this paper, two major innovations are introduced to address this situation. The first is the use of a Hierarchical Bayesian model based regional frequency analysis to better convey uncertainties associated with the parameters of probability density function to the dam risk analysis. The second is the use of Bayesian model coupled HEC-1 rainfall-runoff model to estimate posterior distributions of the model parameters. A reservoir routing analysis with the existing operation rule was performed to convert the inflow scenarios into water surface level scenarios. Performance functions for dam risk model was finally employed to estimate hydrologic dam risk analysis. An application to the Dam in South Korea illustrates how the proposed approach can lead to potentially reliable estimates of dam safety, and an assessment of their sensitivity to the initial water surface level.

Estimation of Flood Damage Using Bayesian Approach (Bayesian 기법을 이용한 홍수피해액 산정)

  • You, Jong Hyun;Yi, Choong Sung;Kim, Hung Soo;Shim, Myung Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.742-747
    • /
    • 2004
  • 최근 들어 지구온난화에 따른 이상기후 및 집중호우 빈발 그리고 급격한 도시화와 산업화는 예측하기 어려운 수문현상의 변화를 유발시키고 있다. 이에 따른 유출양상의 변화는 수문분석에 의한 기존의 설계기준에도 변화를 요구하고 있다. 즉, 설계빈도의 무조건적인 상향조정에 따른 확정론적인 방법에 의존하기보다는 수문량의 변화를 통계학적으로 반영한 수 있도록 불확실성 분석이 필요하게 되었다. 따라서 설계홍수량에 따른 범람면적별 홍수피해액을 산정할 때 설계홍수량에 대한 불확실성 분석을 수행함으로써 안전율을 고려 할 범람과 홍수피해액을 추정할 수 있는 것이다. 본 연구에서는 Bayesian에 의해 불확실성을 고려한 빈도별 설계홍수량을 산정하였으며, HEC-GeoRAS와 HEC-RAS 및 ArcView GIS 3.2a를 이용해 홍수범람면적을 수치지형도에 도시하고, 범람면적별 홍수피해액을 산정하였다. 또한, 불확실성을 고려하지 않은 경우에 대해서는 L-모멘트법을 이용해 설계홍수량을 구하고 홍수범람면적파 홍수피해액을 산정하였다. 불확실성의 고려 여부에 따른 설계홍수량과 예상 홍수피해액을 비교${\cdot}$분석한 결과 불확실성을 고려한 경우가 불확실성을 고려하지 않은 경우에 비해 설계홍수량은 $7\~33\%$, 예상 홍수피해액은 $1\~4\%$정도 차이를 보였다.

  • PDF

Uncertainty analysis of the Hydrograph utilizing a Bayesian techniques (Bayesian 기법을 활용한 홍수수문곡선 불확실성 분석)

  • Kim, Tae-Jeong;Kim, Ki-Young;Park, Rae-Gun;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.528-528
    • /
    • 2016
  • 신뢰성 있는 수문순환모의를 위해서 다양한 수문모형이 사용되고 있다. 그 중 대표적인 수문모형인 강우-유출 모형은 유역에 발생한 강우에 반응하는 유출특성을 평가하는데 이용된다. 강우-유출 과정은 강우량, 유출량, 도달시간 및 토양수분 등과 연관된 매개변수들의 최적화 과정을 통해서 추정된다. 하지만 동일한 강우사상이라도 다양한 매개변수들로 인하여 상당히 다른 유출패턴을 나타내기 때문에 수문순환 과정을 정확히 모의하기 위해서 강우-유출 분석시 불확실성 분석이 필수적으로 요구된다. 불확실성 분석은 통계학에서도 쉽지 않은 연구내용으로서 가장 진보된 불확실성 분석기법인 Bayesian 기법은 매개변수의 추정과 불확실성 분석을 동시에 수행할 수 있는 방법으로 매개변수들은 사후분포(posterior distribution)로 귀결되며 최종적으로 확률분포형의 형태를 가진다. 본 연구에서는 국내외적으로 널리 사용되는 단기유출 모형 HEC-1 모형에 Bayesian 기법을 연계하여 대상유역의 도달시간, 저류상수 및 CN No. 최적화 및 불확실성 평가를 수행하였다. 연구결과 Bayesian 기법을 통한 매개변수 최적화 결과는 안정적인 수렴결과를 확인하였으며, 확률강우량을 입력자료로 사용하여 산정된 빈도별 홍수수분곡선의 불확실성 분석을 통하여 향후 수공구조물의 위험도 분석 및 수자원계획 수립시 유용한 자료로 사용될 것으로 판단된다.

  • PDF

Variability Analysis of Design Flood Considering Uncertainty of Rainfall-Runoff Model and Climate Change (기후변화 영향과 강우-유출 모형의 불확실성을 고려한 설계홍수량 변동성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.365-365
    • /
    • 2012
  • 이수 및 치수를 위한 수공구조물 설계 및 하천기본계획 수립의 요점은 설계홍수량의 산정에 있으며, 통계적으로 유의성을 가지는 설계홍수량을 산정하기 위해서는 일반적으로 30년 이상 관측된 홍수자료가 요구된다. 우리나라의 경우 대부분의 유역이 미계측 유역이거나 관측년수가 비교적 작은 경우가 많으므로, 상대적으로 자료 연한이 긴 강우자료를 빈도분석한 후 이를 강우-유출 모형에 입력하여 확률홍수량을 추정하는 간접적인 방법이 주로 이용되며 사용된 강우의 빈도가 홍수의 빈도와 동일하다는 가정을 기본으로 한다. 그러나 동일한 강우량이 발생하더라도 강우의 강도, 지속시간, 유역의 선행함수조건 등과 같은 유역 특성에 따라 유출의 특성은 현저히 다르게 나타나며 결국 이러한 특성은 입력자료, 강우-유출 모형, 기후변동성 등과 같은 불확실성 요소로 인식될 수 있다. 따라서 본 연구에서는 이러한 불확실성을 고려할 수 있는 강우-유출 모의기법을 개발하여 이를 통해 홍수빈도곡선을 유도할 수 있는 방법론을 제시하고자 한다. 불확실성 분석을 위해 기존 HEC-1 강우-유출 모형에서 Bayesian MCMC 기법을 적용하여 매개변수들의 사후분포를 추정하여 매개변수들의 최적화 및 불확실성 분석을 수행하였다. 마지막으로 기후변화 영향을 통합한 홍수빈도곡선을 유도하기 위해서 극치강수를 모의하는 것이 필요하며, 본 연구에서는 극치값 재현에 있어서 우수한 성능을 발휘하는 Kernel-Pareto Piecewise분포 기반의 강우모의발생 기법을 적용하여 HEC-1모형과 연동되도록 모형을 개발하였다. 본 연구에서 제안하는 방법론은 기존 홍수빈도곡선 유도 방법에서 불확실성을 분석하기 위해 모든 변수들을 독립사상으로 간주하고 Monte Carlo Simulation을 수행함으로서 매개변수들간의 상호연관성, 상관성, 조건부 확률들을 고려할 수 없었던 점을 Bayesian 모형을 통해 매개변수들간의 조건부 확률을 고려한 매개변수의 사후분포 도출을 가능하게 하여 보다 현실적인 강우-유출 관계 도출이 가능하고 불확실성 구간이 자연적으로 도출됨으로서 향후, 신뢰성 있는 수자원 계획수립에 유용한 자료로 활용이 가능할 것으로 판단된다.

  • PDF

Derivation of Flood Frequency Curve with Uncertainty of Rainfall and Rainfall-Runoff Model (강우 및 강우-유출 모형의 불확실성을 고려한 홍수빈도곡선 유도)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Park, Sae-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.59-71
    • /
    • 2013
  • The lack of sufficient flood data being kept across Korea has made it difficult to assess reliable estimates of the design flood while relatively sufficient rainfall data are available. In this regard, a rainfall simulation based derivation technique of flood frequency curve has been proposed in some of studies. The main issues in deriving the flood frequency curve is to develop the rainfall simulation model that is able to effectively reproduce extreme rainfall. Also the rainfall-runoff modeling that can convey uncertainties associated with model parameters needs to be developed. This study proposes a systematic approach to fully consider rainfallrunoff related uncertainties by coupling a piecewise Kernel-Pareto based multisite daily rainfall generation model and Bayesian HEC-1 model. The proposed model was applied to generate runoff ensemble at Daechung Dam watershed, and the flood frequency curve was successfully derived. It was confirmed that the proposed model is very promising in estimating design floods given a rigorous comparison with existing approaches.