• 제목/요약/키워드: Bayesian Design

검색결과 196건 처리시간 0.021초

원자로 정지 동안의 위해도 모델 개발 (Risk Model Development for PWR During Shutdown)

  • Yoon, Won-Hyo;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • 제21권1호
    • /
    • pp.1-11
    • /
    • 1989
  • 원자로 정지동안에도, 잔열제거계통은 그 기능이 계속 유지되어야 하나, 실제로 가압 경수로에서 냉각상실고가 많이 발생되어 있다. 본 논문은 원자로 정지중의 냉각기능상실을 예방하고, 또한 냉각기능상실로 인한 노심손상의 중대성을 완화시키기 위한 대책을 강구하기 위한 시도로서, 전형적인 가압경수로에 대한 사고/고장 수목과 운전원실수 확률을 위한 HCR 모델, 초기 사상의 빈도를 위한 2단계 bayesian 방법 및 고장난 계통의 회복 활률을 위한 계단함수 모델 등을 이용한 원자로 정지 위해도 모델을 개발하여, 잔열제거계통의 신뢰도를 분석하였다. 그 결과는 원자로가 정지 중일 때의 위해도가 운전중일 때 이것에 비해 별로 낮지 않은 것으로 나타났으며, 몇 가지의 설계개선을 통하여 냉각기능상실로 인한 노심 손상확률을 상당히 낮출 수 있는 것으로 나타났다.

  • PDF

Analysis of Korean Import and Export in the Semiconductor Industry: A Global Supply Chain Perspective

  • Shin, Soo-Yong;Shin, Sung-Ho
    • Journal of Korea Trade
    • /
    • 제25권6호
    • /
    • pp.78-104
    • /
    • 2021
  • Purpose - Semiconductors are a significant export item for Korea that is expected to continue to contribute significantly to the Korean economy in the future. Thus, the semiconductor industry is a critical component in the 4th Industrial Revolution and is expected to continue growing as the non-face-to-face economy expands as a result of the COVID-19 pandemic. In this context, this paper aims to empirically investigate how semiconductors are imported and exported in Korea from a global supply chain perspective by analysing import and export data at the micro-level. Design/methodology - This study conducts a multifaceted analysis of the global supply chain for semiconductors and related equipment in Korea by examining semiconductor imports and exports by semiconductor type, year, target country, mode of transportation, airport/port, and domestic region, using import/export micro-data. The visualisation, flow analysis, and Bayesian Network methodologies were used to compensate for the limitations of each method. Findings - Korea is a major exporter of semiconductor memory and has the world's highest competitiveness but is relatively weak in the field of system semiconductors. The trade deficit in 'semiconductor equipment and parts' is clearly growing. As a result, continued investment in 'system semiconductors' and 'semiconductor equipment and parts' technology development is necessary to boost exports and ensure a stable supply chain. Originality/value - Few papers on semiconductor trade in Korea have been published from the perspective of the global supply chain or value chain. This study contributes to the literature in this area by focusing on import and export data for the global supply chain of the Korean semiconductor industry using a variety of approaches. It is our hope that the insights gained from this study will aid in the advancement of SCM research.

인공지능기법을 이용한 초음파분무화학기상증착의 유동해석 결과분석에 관한 연구 (A Study on CFD Result Analysis of Mist-CVD using Artificial Intelligence Method )

  • 하주환;신석윤;김준영;변창우
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.134-138
    • /
    • 2023
  • This study focuses on the analysis of the results of computational fluid dynamics simulations of mist-chemical vapor deposition for the growth of an epitaxial wafer in power semiconductor technology using artificial intelligence techniques. The conventional approach of predicting the uniformity of the deposited layer using computational fluid dynamics and design of experimental takes considerable time. To overcome this, artificial intelligence method, which is widely used for optimization, automation, and prediction in various fields, was utilized to analyze the computational fluid dynamics simulation results. The computational fluid dynamics simulation results were analyzed using a supervised deep neural network model for regression analysis. The predicted results were evaluated quantitatively using Euclidean distance calculations. And the Bayesian optimization was used to derive the optimal condition, which results obtained through deep neural network training showed a discrepancy of approximately 4% when compared to the results obtained through computational fluid dynamics analysis. resulted in an increase of 146.2% compared to the previous computational fluid dynamics simulation results. These results are expected to have practical applications in various fields.

  • PDF

Rare Disaster Events, Growth Volatility, and Financial Liberalization: International Evidence

  • Bongseok Choi
    • Journal of Korea Trade
    • /
    • 제27권2호
    • /
    • pp.96-114
    • /
    • 2023
  • Purpose - This paper elucidates a nexus between the occurrence of rare disaster events and the volatility of economic growth by distinguishing the likelihood of rare events from stochastic volatility. We provide new empirical facts based on a quarterly time series. In particular, we focus on the role of financial liberalization in spreading the economic crisis in developing countries. Design/methodology - We use quarterly data on consumption expenditure (real per capita consumption) from 44 countries, including advanced and developing countries, ending in the fourth quarter of 2020. We estimate the likelihood of rare event occurrences and stochastic volatility for countries using the Bayesian Markov chain Monte Carlo (MCMC) method developed by Barro and Jin (2021). We present our estimation results for the relationship between rare disaster events, stochastic volatility, and growth volatility. Findings - We find the global common disaster event, the COVID-19 pandemic, and thirteen country-specific disaster events. Consumption falls by about 7% on average in the first quarter of a disaster and by 4% in the long run. The occurrence of rare disaster events and the volatility of gross domestic product (GDP) growth are positively correlated (4.8%), whereas the rare events and GDP growth rate are negatively correlated (-12.1%). In particular, financial liberalization has played an important role in exacerbating the adverse impact of both rare disasters and financial market instability on growth volatility. Several case studies, including the case of South Korea, provide insights into the cause of major financial crises in small open developing countries, including the Asian currency crisis of 1998. Originality/value - This paper presents new empirical facts on the relationship between the occurrence of rare disaster events (or stochastic volatility) and growth volatility. Increasing data frequency allows for greater accuracy in assessing a country's specific risk. Our findings suggest that financial market and institutional stability can be vital for buffering against rare disaster shocks. It is necessary to preemptively strengthen the foundation for financial stability in developing countries and increase the quality of the information provided to markets.

한국의 에너지 소비와 경제성장의 탈동조화에 대한 분석 (An Analysis on the Decoupling between Energy Consumption and Economic Growth in South Korea)

  • 강현수
    • 아태비즈니스연구
    • /
    • 제14권4호
    • /
    • pp.305-318
    • /
    • 2023
  • Purpose - This study analyzed the decoupling phenomenon between energy consumption and economic growth in Korea from 1990 to 2021. The main purpose of this study is to suggest policy implications for achieving a low-carbon society and decoupling that Korea must move forward in the face of the climate change crisis. Design/methodology/approach - This study investigated the relationship between energy consumption and economic growth by energy source and sector using the energy-EKC (EEKC) hypothesis which included the energy consumption on the traditional Environmental Kuznets Curve (EKC), and the impulse response function (IRF) model based on Bayesian vector auto-regression (BVAR). Findings - During the analysis period, the trend of decoupling of energy consumption and economic growth in Korea is confirmed starting from 1996. However, the decoupling tendency appeared differently depending on the differences in energy consumption by sources and fields. The results of the IRF model using data on energy consumption by source showed that the impact of GDP and renewable energy consumption resulted in an increase in energy consumption of bio and waste, but a decrease in energy consumption by sources, and the impact of trade dependence was found to increase the consumption of petroleum products. Research implications or Originality - According to the main results, efficient distribution by existing energy source is required through expansion of development of not only renewable energy but also alternative energy. Additionally, in order to increase the effectiveness of existing energy policies to achieve carbon neutrality, more detailed strategies by source and sector of energy consumption are needed.

산업단지 에너지 효율화를 위한 에너지 수요/공급 예측 및 시뮬레이터 UI 설계 (Energy Demand/Supply Prediction and Simulator UI Design for Energy Efficiency in the Industrial Complex)

  • 이형아;박종혁;조우진;김동주;구재회
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.693-700
    • /
    • 2024
  • 에너지 소비 문제가 전 세계적으로 주요한 이슈로 자리잡아 다양한 부문에서 에너지 소비 및 온실가스 배출 절감에 대한 관심이 크다. 2022년 3월 말 기준 국내 산업단지 총 면적은 606 km2로, 전체 국토면적의 약 0.6 %에 불과한다. 하지만 2018년 기준, 국내 산업단지의 연간 에너지 사용량은 국가 전체 에너지 사용량의 53.5 %, 전체 산업부문 에너지 사용량의 83.1 %를 차지하는 110,866.1천 TOE임으로 확인되었다. 더불어 국가 전체 온실가스 배출량의 45.1 %, 산업부문 온실가스 배출량의 76.8 %를 차지하여 환경에 미치고 있는 영향 또한 상당한 상황임이 확인하였다. 이러한 배경 하에 본 연구에서는 산업단지 차원의 에너지 효율화에 기여하고자, 국내 한 산업단지를 대상으로 에너지 수요 및 공급의 예측을 진행하였으며, 예측 결과값을 포함하여 에너지 모니터링을 위한 시뮬레이터 UI 화면을 설계하였다. 머신러닝 알고리즘 중 다층퍼셉트론 (Multi-Layer Perceptron; MLP)을 사용하였으며, 예측 모델의 최적화 기법으로서 베이지안 최적화 (Bayesian Optimization)를 적용하였다. 본 연구에서 구축한 예측 모델은 산업단지 내 압축공기 수요 유량의 경우는 87.90 %, 공용 공기압축기 공급 가능 유량의 경우는 99.54 %의 예측 정확도를 보였다.

자연 프루닝과 베이시안 선택에 의한 신경회로망 일반화 성능 향상 (Improving Generalization Performance of Neural Networks using Natural Pruning and Bayesian Selection)

  • 이현진;박혜영;이일병
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.326-338
    • /
    • 2003
  • 신경회로망 설계 및 모델선택의 목표는 최적의 구조를 가지는 일반화 성능이 우수한 네트워크를 구성하는 것이다. 하지만 학습데이타에는 노이즈(noise)가 존재하고, 그 수도 충분하지 않기 때문에 최종적으로 표현하고자 하는 진확률 분포와 학습 데이타에 의해 표현되는 경험확률분포(empirical probability density) 사이에는 차이가 발생한다. 이러한 차이 때문에 신경회로망을 학습데이타에 대하여 과다하게 적합(fitting)시키면, 학습데이타만의 확률분포를 잘 추정하도록 매개변수들이 조정되어 버리고, 진확률 분포로부터 멀어지게 된다. 이러한 현상을 과다학습이라고 하며, 과다학습된 신경회로망은 학습데이타에 대한 근사는 우수하지만, 새로운 데이타에 대한 예측은 떨어지게 된다. 또한 신경회로망의 복잡도가 증가 할수록 더 많은 매개변수들이 노이즈에 쉽게 적합되어 과다학습 현상은 더욱 심화된다. 본 논문에서는 통계적인 관점을 바탕으로 신경회로망의 일반화 성능을 향상시키는 신경회로 망의 설계 및 모델 선택의 통합적인 프로세스를 제안하고자 한다. 먼저 학습의 과정에서 적응적 정규화가 있는 자연기울기 학습을 통해 수렴속도의 향상과 동시에 과다학습을 방지하여 진확률 분포에 가까운 신경회로망을 얻는다. 이렇게 얻어진 신경회로망에 자연 프루닝(natural pruning) 방법을 적용하여 서로 다른 크기의 후보 신경회로망 모델을 얻는다. 이러한 학습과 복잡도 최적화의 통합 프로세스를 통하여 얻은 후보 모델들 중에서 최적의 모델을 베이시안 정보기준에 의해 선택함으로써 일반화 성능이 우수한 최적의 모델을 구성하는 방법을 제안한다. 또한 벤치마크 문제를 이용한 컴퓨터 시뮬레이션을 통하여, 제안하는 학습 및 모델 선택의 통합프로세스의 일반화 성능과 구조 최적화 성능의 우수성을 검증한다.

용접결함의 형상인식을 위한 특징변수 추출에 관한 연구 (A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws)

  • 김재열;노병옥;유신;김창현;고명수
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

A Bayes Test for Equality of Intra-Subject Variabilities in 2$\times$2 Crossover Design

  • Oh, Hyun-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제7권2호
    • /
    • pp.541-548
    • /
    • 2000
  • Various statistical methods for assessment of equivalence in average bioavailabilities have been developed under the assumption that the intra-subject variabilities for the test and reference formulations are the same. Without the assumption, assessing the equivalence in average bioavailabilites does not imply that the two formulations are therapeutically equivalent and exchangeable. The most commonly used test procedure for equality of variabilites in 2$\times$2 crossover experiment is the so called Pitman-Morgan's adjusted F test based on the model without carryover effects (Chow and Liu(1992)). In this paper, a Bayesian method based on the Intrinsic Bayes Factor is proposed, which can be applied to the model with carryover effects.

  • PDF

용접결함의 형상인식을 위한 특징추출 (The Feature Extraction of Welding Flaw for Shape Recognition)

  • 김재열;유신;김창현;송경석;양동조;이창선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.304-309
    • /
    • 2003
  • In this study, natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

  • PDF