• 제목/요약/키워드: Bayesian Algorithm

검색결과 475건 처리시간 0.026초

하중유형 분석을 통한 좌굴에 강한 복합재료 사각관 설계에 관한 연구 (Enhancement of Buckling Characteristics for Composite Square Tube by Load Type Analysis)

  • 함석우;지승민;전성식
    • Composites Research
    • /
    • 제36권1호
    • /
    • pp.53-58
    • /
    • 2023
  • PIC 설계 방법은 선행 유한요소해석을 통해 하중 유형을 나누어, 각 구간마다 하중 유형에 강한 복합재료의 적층 각도 순서를 배치하는 방법이다. 기존 연구에서는 효율적으로 구간을 나누기 위하여 PIC 설계 방법에 머신 러닝이 적용되었으며, 학습 데이터는 선행 유한요소해석 결과 값을 통해 전체 요소의 일부인 참조 요소에서의 인장, 압축 그리고 전단과 같은 하중 유형으로 나누어 라벨링 되었다. 하지만 좌굴에 대해 고려되지 않아서 좌굴 발생 시, 적절한 하중 유형으로 나눌 수 없기 때문에 이를 해결하기 위한 방법이 필요하다. 본 연구에서는 좌굴이 고려되기 위한 새로운 하중 유형 분석 방법을 기존의 PIC 설계에 적용하는 기법(PIC-NTL)이 제안되었다. 좌굴의 하중 분석은 각 플라이(Ply)별 응력 3축 특성을 통해 진행되었으며, 요소의 두께 방향으로 동일한 크기의 두 영역으로 나누어진 판단 영역 내에서 결정된 하중 유형을 통해 대표 하중 유형이 지정되었다. 학습 데이터의 특성 값은 참조 요소의 좌표, 라벨(Label)은 각 판단 영역의 대표 하중 유형으로 구성되었으며, 이 데이터를 통해 머신 러닝 모델이 학습되었다. 머신 러닝 모델의 성능에 영향을 미치는 하이퍼파라미터는 베이지안 알고리즘을 통하여 최적 값으로 튜닝되었다. 튜닝 된 머신 러닝 모델의 중 SVM 모델이 가장 높은 예측률과 ROC-AUC로 나타났으며, 해당 모델을 통해 예측된 데이터가 유한요소 모델에 매핑되었다. 기존에 제안된 PIC 설계 방법과 비교하기 위하여 사각관 형태의 모델을 압축시키는 유한요소해석이 진행되었으며, 본 연구에서 제안된 설계 방법이 강도와 에너지 흡수율에서 더 우수함이 검증되었다.

기상조건에 따른 도시고속도로 교통류변화 분석 (The Effect of Rain on Traffic Flows in Urban Freeway Basic Segments)

  • 최정순;손봉수;최재성
    • 대한교통학회지
    • /
    • 제17권1호
    • /
    • pp.29-39
    • /
    • 1999
  • 본 연구는 우리나라의 고속도로 기본구간에서 기상조건에 따른 도시고속도로 교통류의 특성을 분석한 것이다. 본 연구의 주요 결과를 요약하면 다음과 같다. 첫째, 비가 올 경우 속도-교통류율간의 관계는 길어깨쪽 차로를 제외하고 차로별로 큰 차이가 없이 유사한 패턴을 보이는 것으로 나타났다. 둘째 교통류율-점유율간의 관계식은 비가 올 경우 그 관계성은 더 분명해지지만, 서비스교통류율이 약 200대/시/차로 정도 감소하는 것으로 나타났다. 셋째, 비가 올 경우 도로의 관측된 서비스교통류율은 맑은 날에 비해 약 10-20% 정도 감소하는 것으로 나타났으며, 이러한 결과는 1998 HCM에서 제시한 결과 및 교통류율-점유율 관계식의 기울기 감소 패턴과 일치한다. 넷째, 비가 올 경우 전체 차로의 소통능력은 맑은 날에 비해 감소하고 전반적으로 중앙분리대쪽 차로의 소통 능력이 길어깨쪽 차로에 비해 높은 것으로 나타났으나, 기상변화에 따른 차로별 임계속도와 임계점유율은 큰 변화가 없는 것으로 나타났다. 본 연구는 도시고속도로 기본구간의 1개 지점에서 나타난 특성으로서 공간적 분포 특성을 고려하기 위해서는 향후 연구에서 다양한 조건을 갖는 도로지점에 대해 분석해야 할 것이다. 또한 비 뿐만 아니라 안개나 눈에 의 한 영향을 고려한 상세한 분석이 필요하다. 본 연구의 결과는 그간 일반적으로 알려졌던 내용과 큰 차이는 없지만 실제로 고속도로를 설계하거나 운영하는데 근거자료로 활용할 수 있는 자료를 제공하는 측면에서 의미가 있다고 판단되며, 도로용량편람을 개정 및 수정하는 과정에서 명확히 명시해야할 기초자료를 제공하고 있다.Bayesian pooling technique for estimating the dynamic link travel time of networks. The proposed algorithm has been validated using the field experiment data out of GPS probes and detectors over the roadways and the estimated link travel time from the algorithm is proved to be more useful than the mere arithmetic mean from each traffic source. the whole sentence(preceeding sentence and the accompanying sentence). The conjunctive endings are '-고₂, -으며₂, -다가₂, -어서, -고서, 을수록, -은데₂, -으면₂, -어야₂, -어도₂, -으니까₂, -거든₁,'etc. Type C can be interpreted as the neutralized tense of the preceeding sentence and the absolute tense of the accompanying sentence. The conjunctive endings are '-으러, -으려고, -고자, -도록, -게,'etc. Type D can be described as the relative tense of the part of the preceeding sentence and the

  • PDF

지능형 전망모형을 결합한 로보어드바이저 알고리즘 (Robo-Advisor Algorithm with Intelligent View Model)

  • 김선웅
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.39-55
    • /
    • 2019
  • 최근 은행과 증권회사를 중심으로 다양한 로보어드바이저 금융상품들이 출시되고 있다. 로보어드바이저는 사람 대신 컴퓨터가 포트폴리오 자산배분에 대한 투자 결정을 실행하기 때문에 다양한 자산배분 알고리즘이 활용되고 있다. 본 연구에서는 대표적 로보어드바이저 알고리즘인 블랙리터만모형의 강점을 살리면서 객관적 투자자 전망을 도출할 수 있는 지능형 전망모형을 제안하고 이를 내재균형수익률과 결합하여 최종 포트폴리오를 도출하는 로보어드바이저 자산배분 알고리즘을 새로이 제안하며, 실제 주가자료를 이용한 실증분석 결과를 통해 전문가의 주관적 전망을 대신할 수 있는 지능형 전망모형의 실무적 적용 가능성을 보여주고자 한다. 그동안 주가 예측에서 우수한 성과를 보여주었던 기계학습 방법 중 SVM 모형을 이용하여 각 자산별 기대수익률에 대한 예측과 예측 확률을 도출하고 이를 각각 기대수익률에 대한 투자자 전망과 전망에 대한 신뢰도 수준의 입력변수로 활용하는 지능형 전망모형을 제안하였다. 시장포트폴리오로부터 도출된 내재균형수익률과 지능형 전망모형의 기대수익률, 확률을 결합하여 최종적인 블랙리터만모형의 최적포트폴리오를 도출하였다. 주가자료는 2008년부터 2018년까지의 132개월 동안의 8개의 KOSPI 200 섹터지수 월별 자료를 분석하였다. 블랙리터만모형으로 도출된 최적포트폴리오의 결과가 기존의 평균분산모형이나 리스크패리티모형 등과 비교하여 우수한 성과를 보여주었다. 구체적으로 2008년부터 2015년까지의 In-Sample 자료에서 최적화된 블랙리터만모형을 2016년부터 2018년까지의 Out-Of-Sample 기간에 적용한 실증분석 결과에서 다른 알고리즘보다 수익과 위험 모두에서 좋은 성과를 기록하였다. 총수익률은 6.4%로 최고 수준이며, 위험지표인 MDD는 20.8%로 최저수준을 기록하였다. 수익과 위험을 동시에 고려하여 투자 성과를 측정하는 샤프비율 역시 0.17로 가장 좋은 결과를 보여주었다. 증권계의 애널리스트 전문가들이 발표하는 투자자 전망자료의 신뢰성이 낮은 상태에서, 본 연구에서 제안된 지능형 전망모형은 현재 빠른 속도로 확장되고 있는 로보어드바이저 관련 금융상품을 개발하고 운용하는 실무적 관점에서 본 연구는 의의가 있다고 판단된다.

추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법 (Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System)

  • 이오준;유은순
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.119-142
    • /
    • 2015
  • 사용자의 취향과 선호도를 고려하여 정보를 제공하는 추천 시스템의 중요성이 높아졌다. 이를 위해 다양한 기법들이 제안되었는데, 비교적 도메인의 제약이 적은 협업 필터링이 널리 사용되고 있다. 협업 필터링의 한 종류인 모델 기반 협업 필터링은 기계학습이나 데이터 마이닝 모델을 협업 필터링에 접목한 방법이다. 이는 희박성 문제와 확장성 문제 등의 협업 필터링의 근본적인 한계를 개선하지만, 모델 생성 비용이 높고 성능/확장성 트레이드오프가 발생한다는 한계점을 갖는다. 성능/확장성 트레이드오프는 희박성 문제의 일종인 적용범위 감소 문제를 발생시킨다. 또한, 높은 모델 생성 비용은 도메인 환경 변화의 누적으로 인한 성능 불안정의 원인이 된다. 본 연구에서는 이 문제를 해결하기 위해, 군집화 기반 협업 필터링에 마르코프 전이확률모델과 퍼지 군집화의 개념을 접목하여, 적용범위 감소 문제와 성능 불안정성 문제를 해결한 예측적 군집화 기반 협업 필터링 기법을 제안한다. 이 기법은 첫째, 사용자 기호(Preference)의 변화를 추적하여 정적인 모델과 동적인 사용자간의 괴리 해소를 통해 성능 불안정 문제를 개선한다. 둘째, 전이확률과 군집 소속 확률에 기반한 적용범위 확장으로 적용범위 감소 문제를 개선한다. 제안하는 기법의 검증은 각각 성능 불안정성 문제와 확장성/성능 트레이드오프 문제에 대한 강건성(robustness)시험을 통해 이뤄졌다. 제안하는 기법은 기존 기법들에 비해 성능의 향상 폭은 미미하다. 또한 데이터의 변동 정도를 나타내는 지표인 표준 편차의 측면에서도 의미 있는 개선을 보이지 못하였다. 하지만, 성능의 변동 폭을 나타내는 범위의 측면에서는 기존 기법들에 비해 개선을 보였다. 첫 번째 실험에서는 모델 생성 전후의 성능 변동폭에서 51.31%의 개선을, 두 번째 실험에서는 군집 수 변화에 따른 성능 변동폭에서 36.05%의 개선을 보였다. 이는 제안하는 기법이 성능의 향상을 보여주지는 못하지만, 성능 안정성의 측면에서는 기존의 기법들을 개선하고 있음을 의미한다.

텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석 (A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis)

  • 감미아;송민
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.53-77
    • /
    • 2012
  • 본 연구는 경향신문, 한겨레, 동아일보 세 개의 신문기사가 가지고 있는 내용 및 논조에 어떠한 차이가 있는지를 객관적인 데이터를 통해 제시하고자 시행되었다. 본 연구는 텍스트 마이닝 기법을 활용하여 신문기사의 키워드 단순빈도 분석과 Clustering, Classification 결과를 분석하여 제시하였으며, 경제, 문화 국제, 사회, 정치 및 사설 분야에서의 신문사 간 차이점을 분석하고자 하였다. 신문기사의 문단을 분석단위로 하여 각 신문사의 특성을 파악하였고, 키워드 네트워크로 키워드들 간의 관계를 시각화하여 신문사별 특성을 객관적으로 볼 수 있도록 제시하였다. 신문기사의 수집은 신문기사 데이터베이스 시스템인 KINDS에서 2008년부터 2012년까지 해당 주제로 주제어 검색을 하여 총 3,026개의 수집을 하였다. 수집된 신문기사들은 불용어 제거와 형태소 분석을 위해 Java로 구현된 Lucene Korean 모듈을 이용하여 자연어 처리를 하였다. 신문기사의 내용 및 논조를 파악하기 위해 경향신문, 한겨레, 동아일보가 정해진 기간 내에 일어난 특정 사건에 대해 언급하는 단어의 빈도 상위 10위를 제시하여 분석하였고, 키워드들 간 코사인 유사도를 분석하여 네트워크 지도를 만들었으며 단어들의 네트워크를 통해 Clustering 결과를 분석하였다. 신문사들마다의 논조를 확인하기 위해 Supervised Learning 기법을 활용하여 각각의 논조에 대해 분류하였으며, 마지막으로는 분류 성능 평가를 위해 정확률과 재현률, F-value를 측정하여 제시하였다. 본 연구를 통해 문화 전반, 경제 전반, 정치분야의 통합진보당 이슈에 대한 신문기사들에 전반적인 내용과 논조에 차이를 보이고 있음을 알 수 있었고, 사회분야의 4대강 사업에 대한 긍정-부정 논조에 차이가 있음을 발견할 수 있었다. 본 연구는 지금까지 연구되어왔던 한글 신문기사의 코딩 및 담화분석 방법에서 벗어나, 텍스트 마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있다. 향후 지속적인 연구를 통해 분류 성능을 보다 높인다면, 사람들이 뉴스를 접할 때 그 뉴스의 특정 논조 성향에 대해 우선적으로 파악하여 객관성을 유지한 채 정보에 접근할 수 있도록 도와주는 신뢰성 있는 툴을 만들 수 있을 것이라 기대한다.