일반적으로 자료의 효과 연속형인 경우 분산분석과 이산형인 경우 분할표 카이제곱 검정을 통계적 분석방법으로 사용한다. 다차원의 자료에서는 계층적 구조의 분석이 요구되어지며 자료간의 인과관계를 나타내기 위해 통계적 선형모형을 채택하여 분석한다. 선형모형의 구조에서는 자료의 정규성이 요구되어지며 일부 자료에서는 비 선형모형을 채택할 수도 있다. 특히, 설문조사 자료 구조는 문항의 특성상 이산형 자료의 형태가 많아 모형의 조건에 만족하지 않는 경우가 종종 발생한다. 자료구조의 차원이 높아질수록 인과관계, 교호작용, 연관성분석 등에 다차원 범주형 자료 분석 방법을 사용한다. 본 논문에서는 확률분포의 계산을 이용한 베이지안 네트워크 모형이 범주형 자료 분석에서 분석절차를 줄이고 교호작용 및 인과관계를 분석할 수 있다는 것을 제시하였다.
로지스틱 회귀 모형은 다양한 분야에서 범주형 종속 변수를 예측하거나 분류하기 위한 모형으로 많이 사용되고 있다. 로지스틱 회귀 모형에 대한 전통적인 베이지안 추론 기법으로 메트로폴리스-헤이스팅스 알고리즘이 많이 사용되었지만, 수렴의 속도가 느리고 제안 분포에 대한 적절성을 보장하기 어렵다. 따라서, 본 논문에서는 모형에 대한 베이지안 추론 방법으로 Frühwirth-Schnatter와 Frühwirth (2007)에서 제안된 보조 혼합 샘플링(auxiliary mixture sampling) 기법을 사용하였다. 이 방법은 모형의 선형성과 정규성을 만족시키기 위해 두 단계에 거쳐 잠재변수를 도입하며, 결과적으로 깁스 샘플링을 통한 추론을 가능하게 한다. 제안한 모형의 효과를 검증하기 위해 2020년 지역사회 건강조사 당뇨병 자료에 적용하여 메트로폴리스-헤이스팅스를 사용한 모형과 추론 결과를 비교 분석하였다. 또한, 다양한 분류 모형들과 본 논문에서 제안한 모형의 분류 성능을 비교한 결과 제안된 모형이 분류 분석에서도 좋은 성능을 보이는 것을 확인할 수 있었다.
최근 우리나라에서 빈번하게 발생되는 가뭄으로 인하여 많은 피해가 발생하고 있으며, 이에 대한 사전대응의 필요성이 커지고 있다. 가뭄에 대한 효과적인 사전대응을 위해서는 신뢰성 있는 가뭄 예측 정보가 필수적이다. 본 연구에서는 수문학적 가뭄에 대한 확률론적 예측을 수행하기 위하여 가뭄의 전이현상을 베이지안 네트워크 모형에 반영하였다. 가뭄의 전이현상을 고려한 베이지안 네트워크 기반의 가뭄 예측 모형(PBNDF)은 과거, 현재, 미래에 대한 다중 모형 앙상블 예측결과와 가뭄전이 관계를 결합하여 새로운 수문학적 가뭄 예측 결과를 생산하도록 구축되었다. 본 연구에서 PBNDF 모형은 파머수문학적 가뭄지수를 활용하여 낙동강 유역의 10개 지점을 대상으로 가뭄을 확률적으로 예측하는데 적용되었다. PBNDF 모형의 ROC 분석 결과 ROC 점수가 0.5 이상의 유의한 결과를 나타내 실제 예측 모형으로 활용가능하다는 것을 확인할 수 있었다. 또한, 기존에 개발된 모형(지속성 예측, 베이지안 네트워크 예측 모형)과 평균제곱오차의 제곱근(RMSE), 기술 점수(SS)를 활용하여 비교를 수행하였으며, 그 결과 PBNDF 모형의 RMSE는 상대적으로 낮은 값을 가지며, SS는 약 0.1~0.15 정도 높은 것으로 나타나 예측성능이 향상되었다는 것을 확인할 수 있었다.
시간적인 차이를 두고 획득한 이질적인 과거 전쟁 결과 데이터를 하나의 모형으로 구축하는 방법으로 베이지안 추론에 의한 전쟁시뮬레이션 모형을 구축하는 방법을 제안하였다. 과거의 전쟁 결과를 분석하여 미래에 있을 수 있는 전쟁을 예측하는 방법으로 선형회귀모형을 적용하는 방법을 고려할 수 있다. 그러나 역사적으로 시대가 서로 달라 전장 환경의 변화가 반영된 이질적인 두 유형의 자료들이라면 모형의 가정사항 위반으로 하나의 선형회귀모형으로 적합하는 것은 적절하지 않다. 이러한 문제를 해결하기 위해 앞선 시대에 있는 자료를 비정보적 사전분포로 가정하여 사후분포를 구하고 이를 다음 시대에 얻은 자료를 분석하기 위한 사전분포로 활용하여 최종 사후분포를 추론하는 베이지안 추론 방법을 제안하였다. 베이지안 추론 방법의 또 다른 장점은 마코프 체인 몬테 카를로 방법으로 샘플링한 결과를 이용하여 불확실성이 반영된 사후분포나 사후예측분포를 추론할 수 있다는 점이다. 이렇게 했을 때 고전적인 선형회귀모형으로 분석하는 것보다 다양한 정보를 활용할 수 있을 뿐만 아니라 향후 추가적으로 획득되는 자료도 모형에 반영하여 모형을 계속 업데이트시킬 수 있다는 장점이 있다.
본 논문에서는 제로팽창 음이항(ZINB) 회귀모형에서 회귀계수에 대한 추론방법으로 마코프체인몬테카를로(MC MC) 기법을 이용한 베이지안 추론방법을 제안하였다. 본 연구에서 고려한 ZINB 회귀모형은 반응변수의 평균뿐만 아니라 제로팽창확률에 대한 회귀모형을 고려한 것으로서 Jang, et al.(2010)의 연구를 확장한 것이다. 아울러 실제사례에 본 연구에서 제안한 베이지안 추론방법을 적용하고 과대산포를 허용하지 않는 제로팽창 포아송(ZIP) 회귀모형과 적합결과를 DIC를 이용하여 비교하였다. 실제 사례분석 결과 ZINB 회귀모형의 DIC가 ZIP모형보다 작게 나타나 ZINB 회귀모형이 ZIP 회귀모형보다 잘 적합되었음을 알 수 있었다.
Journal of the Korean Data and Information Science Society
/
제22권5호
/
pp.911-919
/
2011
최근 의학에서는 정신 질환과 관련된 위험 인자를 찾는 것이 중요해지고 있다. 인자들을 찾아서 인자들의 특성과 관련성을 파악하면 병을 사전에 예방 할 수 있다. 또한 이 연구는 의학 발전에 많은 도움을 줄 수 있다. 정신 질환에 대한 위험요인은 주로 로지스틱 회귀모형을 사용하여 찾아 왔다. 하지만 이 논문에서는 데이터마이닝 기법 중 CART, C5.0, 로지스틱, 신경망, 베이지안 네트워크 방법을 이용한다. 정신장애 질병인 섬망자료를 적용하여, 최적의 모형인 베이지안 네트워크 방법을 선택하였다. 이 베이지안 네트워크 기법을 위험 요소를 찾는데 사용하고, 이 위험인자 간의 관계를 방사형 그래프를 통해서 규명하였다.
본 논문에서는 지수생존 모형의 형태들로써 단순 지수모형, 변환 점 지수모형과 유한 혼합 지수모형 등 세 가지 모형을 소개한다. 이러한 모형들 중에서, 최적의 모형을 찾기 위하여 Gelfand와 Ghosh(1998)의 방법을 이용한 모형 선택 방법을 제안한다. 이때, 계산상의 어려움을 피하기 위하여 자료 확장 기법(Tanner와 Wong, 1987)과 깁스 샘플러(Gelfand와 Smith, 1990)를 사용하였다. 제안된 베이지안 방법을 설명하기 위하여 모의 실험 자료와Stangl의 항 우울제 자료에 적용한다. 모형 선택 방법은 사전 분포와 모형 선택 기준의 가중치에 민감하지 않다는 것을 제한된 우리의 실험으로 알 수 있었다.
유역 내의 물순환 평가를 위하여 적합한 강우-유출모형을 선정하고 적용하는 것은 수문학적 관점에서 주된 과제이다. 장기적인 관점의 수자원 관리를 위해서는 직접적인 계측을 통해 장기간의 유출자료를 취득하는 방법이 있으나, 국내의 주요지점을 제외한 대다수의 중소규모의 지점에 계측기를 설치하는 것은 현실적으로 어려우므로, 자료취득이 비교적 용이하고 신뢰성이 높은 장기간 강우 자료를 강우-유출모형의 입력자료로 활용하여 미계측 유역으로의 모형을 확장하는 방안이 적절하다는 평가를 받고 있다. 본 연구는 국내외 주요 연속강우-유출모형의 특성을 파악하기 위하여 비교적 신뢰성 있는 자료를 보유하고 있는 소양강댐 유역에 다수의 연속강우-유출모형을 적용하였다. 모델링 결과로 산출된 유황곡선(flow duration curve)을 소양강댐 유입량과 비교하여 각 모형의 특징을 파악하고 유량에 따른 적합성 평가를 진행하였다. 또한, 향후 미계측유역으로 모형을 확장하기 위하여 매개변수 개수 및 재현능력을 동시에 평가하였다. 다수의 모형 중 적합성이 높은 모형들을 선별하였으며, 선별된 모형들의 불확실성을 고려함과 동시에 계층적 베이지안 기법을 활용하여 최종적으로 앙상블모형을 제시하였다. 앙상블모형을 단일 모형과 비교한 결과 단일 모형보다 개선된 성능을 확인하였다.
본 논문에서는 비동질 포아송 과정(NHPP)에 기초한 소프트웨어 에러 현상에 대한 신뢰도 모형을 고려하고 사전정보(Prior information)를 이용한 베이지안 추론을 시행하였다. 고장 패턴은 NHPP에 대한 강도함수와 평균값 함수로서 나타낼 수 있다. 따라서 본 논문에서는 대수형 포아송 실행시간 모형(Logarithmic Poisson model), Crow 모형 그리고 Rayleigh 모형에 대하여 베이지안 모수 추정방법을 적용하였다. 효율적 모형을 위하여 이들 모형에 관한 모형선택을 편차자승합(SSE)의 합을 이용하여 시행하였고 모수의 추정을 위해서 마코브체인 몬테카를로(MCMC) 기법중에 하나인 깁스샘플링(Gibbs sampling)과 메트로폴리스 알고리즘을 이용한 근사추정 기법이 사용되었다. 수치적인 예에서는 Musa의 T1 자료를 이용하여 모수 및 신뢰도를 추정한 수치 결과론 나열하였다.
소프트웨어 시스템이 복잡해지면 고장의 원인이 하나의 강도함수에 의해서만 일어나지 않고 여러 원인이 중첩되어 발생할 수 있다. 이러한 복잡한 시스템에 의한 우도함수의 계산상의 어려움 때문에 반복표본을 이용하는 깁스 샘플링 기법이 고려되었다. 관찰된 고장시점은 중첩모형으로 표현이 가능한 잠재(latent)변수들을 이용하여 깁스 알고리즘을 적용하였다. 단순모형과 중첩모형의 비교를 위해 사후베이즈 요인과 상대오차의 합을 이용하여 모형선택을 시도하였다. 수치적인 예에서 GOS 속성을 가진 Goel-Okumoto 모형과 Weibull 모형을 선택하고 NHPP의 자료는 Lewis와 Shedler[25]에 의해 제시된 Thining 알고리즘을 이용하여 발생된 자료를 이용하고 사전분포는 상대적으로 확산분포(diffuse priors)를 이용한 모수추정과 사후베이즈요인과 상대오차를 이용한 모형선택을 한 결과 단순모형들 보다 중첩모형이 좋은 형으로 간주할 수 있음을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.