• 제목/요약/키워드: Bayesian 모형

검색결과 400건 처리시간 0.024초

베이지안 네트워크를 이용한 다차원 범주형 분석 (Multi-dimension Categorical Data with Bayesian Network)

  • 김용철
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.169-174
    • /
    • 2018
  • 일반적으로 자료의 효과 연속형인 경우 분산분석과 이산형인 경우 분할표 카이제곱 검정을 통계적 분석방법으로 사용한다. 다차원의 자료에서는 계층적 구조의 분석이 요구되어지며 자료간의 인과관계를 나타내기 위해 통계적 선형모형을 채택하여 분석한다. 선형모형의 구조에서는 자료의 정규성이 요구되어지며 일부 자료에서는 비 선형모형을 채택할 수도 있다. 특히, 설문조사 자료 구조는 문항의 특성상 이산형 자료의 형태가 많아 모형의 조건에 만족하지 않는 경우가 종종 발생한다. 자료구조의 차원이 높아질수록 인과관계, 교호작용, 연관성분석 등에 다차원 범주형 자료 분석 방법을 사용한다. 본 논문에서는 확률분포의 계산을 이용한 베이지안 네트워크 모형이 범주형 자료 분석에서 분석절차를 줄이고 교호작용 및 인과관계를 분석할 수 있다는 것을 제시하였다.

보조 혼합 샘플링을 이용한 베이지안 로지스틱 회귀모형 : 당뇨병 자료에 적용 및 분류에서의 성능 비교 (Bayesian logit models with auxiliary mixture sampling for analyzing diabetes diagnosis data)

  • 이은희;황범석
    • 응용통계연구
    • /
    • 제35권1호
    • /
    • pp.131-146
    • /
    • 2022
  • 로지스틱 회귀 모형은 다양한 분야에서 범주형 종속 변수를 예측하거나 분류하기 위한 모형으로 많이 사용되고 있다. 로지스틱 회귀 모형에 대한 전통적인 베이지안 추론 기법으로 메트로폴리스-헤이스팅스 알고리즘이 많이 사용되었지만, 수렴의 속도가 느리고 제안 분포에 대한 적절성을 보장하기 어렵다. 따라서, 본 논문에서는 모형에 대한 베이지안 추론 방법으로 Frühwirth-Schnatter와 Frühwirth (2007)에서 제안된 보조 혼합 샘플링(auxiliary mixture sampling) 기법을 사용하였다. 이 방법은 모형의 선형성과 정규성을 만족시키기 위해 두 단계에 거쳐 잠재변수를 도입하며, 결과적으로 깁스 샘플링을 통한 추론을 가능하게 한다. 제안한 모형의 효과를 검증하기 위해 2020년 지역사회 건강조사 당뇨병 자료에 적용하여 메트로폴리스-헤이스팅스를 사용한 모형과 추론 결과를 비교 분석하였다. 또한, 다양한 분류 모형들과 본 논문에서 제안한 모형의 분류 성능을 비교한 결과 제안된 모형이 분류 분석에서도 좋은 성능을 보이는 것을 확인할 수 있었다.

가뭄의 전이 현상을 고려한 수문학적 가뭄에 대한 베이지안 네트워크 기반 확률 예측 (Bayesian networks-based probabilistic forecasting of hydrological drought considering drought propagation)

  • 신지예;권현한;이주헌;김태웅
    • 한국수자원학회논문집
    • /
    • 제50권11호
    • /
    • pp.769-779
    • /
    • 2017
  • 최근 우리나라에서 빈번하게 발생되는 가뭄으로 인하여 많은 피해가 발생하고 있으며, 이에 대한 사전대응의 필요성이 커지고 있다. 가뭄에 대한 효과적인 사전대응을 위해서는 신뢰성 있는 가뭄 예측 정보가 필수적이다. 본 연구에서는 수문학적 가뭄에 대한 확률론적 예측을 수행하기 위하여 가뭄의 전이현상을 베이지안 네트워크 모형에 반영하였다. 가뭄의 전이현상을 고려한 베이지안 네트워크 기반의 가뭄 예측 모형(PBNDF)은 과거, 현재, 미래에 대한 다중 모형 앙상블 예측결과와 가뭄전이 관계를 결합하여 새로운 수문학적 가뭄 예측 결과를 생산하도록 구축되었다. 본 연구에서 PBNDF 모형은 파머수문학적 가뭄지수를 활용하여 낙동강 유역의 10개 지점을 대상으로 가뭄을 확률적으로 예측하는데 적용되었다. PBNDF 모형의 ROC 분석 결과 ROC 점수가 0.5 이상의 유의한 결과를 나타내 실제 예측 모형으로 활용가능하다는 것을 확인할 수 있었다. 또한, 기존에 개발된 모형(지속성 예측, 베이지안 네트워크 예측 모형)과 평균제곱오차의 제곱근(RMSE), 기술 점수(SS)를 활용하여 비교를 수행하였으며, 그 결과 PBNDF 모형의 RMSE는 상대적으로 낮은 값을 가지며, SS는 약 0.1~0.15 정도 높은 것으로 나타나 예측성능이 향상되었다는 것을 확인할 수 있었다.

베이지안 추론을 이용한 전쟁 시뮬레이션과 예측 연구 (A Study on the War Simulation and Prediction Using Bayesian Inference)

  • 이승용;유병주;윤상윤;방상호;정재웅
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.77-86
    • /
    • 2021
  • 시간적인 차이를 두고 획득한 이질적인 과거 전쟁 결과 데이터를 하나의 모형으로 구축하는 방법으로 베이지안 추론에 의한 전쟁시뮬레이션 모형을 구축하는 방법을 제안하였다. 과거의 전쟁 결과를 분석하여 미래에 있을 수 있는 전쟁을 예측하는 방법으로 선형회귀모형을 적용하는 방법을 고려할 수 있다. 그러나 역사적으로 시대가 서로 달라 전장 환경의 변화가 반영된 이질적인 두 유형의 자료들이라면 모형의 가정사항 위반으로 하나의 선형회귀모형으로 적합하는 것은 적절하지 않다. 이러한 문제를 해결하기 위해 앞선 시대에 있는 자료를 비정보적 사전분포로 가정하여 사후분포를 구하고 이를 다음 시대에 얻은 자료를 분석하기 위한 사전분포로 활용하여 최종 사후분포를 추론하는 베이지안 추론 방법을 제안하였다. 베이지안 추론 방법의 또 다른 장점은 마코프 체인 몬테 카를로 방법으로 샘플링한 결과를 이용하여 불확실성이 반영된 사후분포나 사후예측분포를 추론할 수 있다는 점이다. 이렇게 했을 때 고전적인 선형회귀모형으로 분석하는 것보다 다양한 정보를 활용할 수 있을 뿐만 아니라 향후 추가적으로 획득되는 자료도 모형에 반영하여 모형을 계속 업데이트시킬 수 있다는 장점이 있다.

제로팽창 음이항 회귀모형에 대한 베이지안 추론 (Bayesian Inference for the Zero In ated Negative Binomial Regression Model)

  • 심정숙;이동희;정병철
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.951-961
    • /
    • 2011
  • 본 논문에서는 제로팽창 음이항(ZINB) 회귀모형에서 회귀계수에 대한 추론방법으로 마코프체인몬테카를로(MC MC) 기법을 이용한 베이지안 추론방법을 제안하였다. 본 연구에서 고려한 ZINB 회귀모형은 반응변수의 평균뿐만 아니라 제로팽창확률에 대한 회귀모형을 고려한 것으로서 Jang, et al.(2010)의 연구를 확장한 것이다. 아울러 실제사례에 본 연구에서 제안한 베이지안 추론방법을 적용하고 과대산포를 허용하지 않는 제로팽창 포아송(ZIP) 회귀모형과 적합결과를 DIC를 이용하여 비교하였다. 실제 사례분석 결과 ZINB 회귀모형의 DIC가 ZIP모형보다 작게 나타나 ZINB 회귀모형이 ZIP 회귀모형보다 잘 적합되었음을 알 수 있었다.

베이지안 네트워크와 방사형 그래프를 이용한 섬망의 효과 규명 (The effect investigation of the delirium by Bayesian network and radial graph)

  • 이제영;배재영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.911-919
    • /
    • 2011
  • 최근 의학에서는 정신 질환과 관련된 위험 인자를 찾는 것이 중요해지고 있다. 인자들을 찾아서 인자들의 특성과 관련성을 파악하면 병을 사전에 예방 할 수 있다. 또한 이 연구는 의학 발전에 많은 도움을 줄 수 있다. 정신 질환에 대한 위험요인은 주로 로지스틱 회귀모형을 사용하여 찾아 왔다. 하지만 이 논문에서는 데이터마이닝 기법 중 CART, C5.0, 로지스틱, 신경망, 베이지안 네트워크 방법을 이용한다. 정신장애 질병인 섬망자료를 적용하여, 최적의 모형인 베이지안 네트워크 방법을 선택하였다. 이 베이지안 네트워크 기법을 위험 요소를 찾는데 사용하고, 이 위험인자 간의 관계를 방사형 그래프를 통해서 규명하였다.

지수 생존 모형에서의 베이지안 모형 선택 (Bayesian model selection in exponential survival models)

  • 정윤식;김미숙
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.57-71
    • /
    • 2002
  • 본 논문에서는 지수생존 모형의 형태들로써 단순 지수모형, 변환 점 지수모형과 유한 혼합 지수모형 등 세 가지 모형을 소개한다. 이러한 모형들 중에서, 최적의 모형을 찾기 위하여 Gelfand와 Ghosh(1998)의 방법을 이용한 모형 선택 방법을 제안한다. 이때, 계산상의 어려움을 피하기 위하여 자료 확장 기법(Tanner와 Wong, 1987)과 깁스 샘플러(Gelfand와 Smith, 1990)를 사용하였다. 제안된 베이지안 방법을 설명하기 위하여 모의 실험 자료와Stangl의 항 우울제 자료에 적용한다. 모형 선택 방법은 사전 분포와 모형 선택 기준의 가중치에 민감하지 않다는 것을 제한된 우리의 실험으로 알 수 있었다.

계층적 베이지안을 활용한 개념적 강우-유출모형 앙상블 모델 구축 (Development of a conceptual rainfall-runoff ensemble model using hierarchical Bayesian method)

  • 유재웅;김민지;오세청;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.181-181
    • /
    • 2021
  • 유역 내의 물순환 평가를 위하여 적합한 강우-유출모형을 선정하고 적용하는 것은 수문학적 관점에서 주된 과제이다. 장기적인 관점의 수자원 관리를 위해서는 직접적인 계측을 통해 장기간의 유출자료를 취득하는 방법이 있으나, 국내의 주요지점을 제외한 대다수의 중소규모의 지점에 계측기를 설치하는 것은 현실적으로 어려우므로, 자료취득이 비교적 용이하고 신뢰성이 높은 장기간 강우 자료를 강우-유출모형의 입력자료로 활용하여 미계측 유역으로의 모형을 확장하는 방안이 적절하다는 평가를 받고 있다. 본 연구는 국내외 주요 연속강우-유출모형의 특성을 파악하기 위하여 비교적 신뢰성 있는 자료를 보유하고 있는 소양강댐 유역에 다수의 연속강우-유출모형을 적용하였다. 모델링 결과로 산출된 유황곡선(flow duration curve)을 소양강댐 유입량과 비교하여 각 모형의 특징을 파악하고 유량에 따른 적합성 평가를 진행하였다. 또한, 향후 미계측유역으로 모형을 확장하기 위하여 매개변수 개수 및 재현능력을 동시에 평가하였다. 다수의 모형 중 적합성이 높은 모형들을 선별하였으며, 선별된 모형들의 불확실성을 고려함과 동시에 계층적 베이지안 기법을 활용하여 최종적으로 앙상블모형을 제시하였다. 앙상블모형을 단일 모형과 비교한 결과 단일 모형보다 개선된 성능을 확인하였다.

  • PDF

비동질적 포아송과정을 사용한 소프트웨어 신뢰 성장모형에 대한 베이지안 신뢰성 분석에 관한 연구 (The Bayesian Analysis for Software Reliability Models Based on NHPP)

  • 이상식;김희철;송영재
    • 정보처리학회논문지D
    • /
    • 제10D권5호
    • /
    • pp.805-812
    • /
    • 2003
  • 본 논문에서는 비동질 포아송 과정(NHPP)에 기초한 소프트웨어 에러 현상에 대한 신뢰도 모형을 고려하고 사전정보(Prior information)를 이용한 베이지안 추론을 시행하였다. 고장 패턴은 NHPP에 대한 강도함수와 평균값 함수로서 나타낼 수 있다. 따라서 본 논문에서는 대수형 포아송 실행시간 모형(Logarithmic Poisson model), Crow 모형 그리고 Rayleigh 모형에 대하여 베이지안 모수 추정방법을 적용하였다. 효율적 모형을 위하여 이들 모형에 관한 모형선택을 편차자승합(SSE)의 합을 이용하여 시행하였고 모수의 추정을 위해서 마코브체인 몬테카를로(MCMC) 기법중에 하나인 깁스샘플링(Gibbs sampling)과 메트로폴리스 알고리즘을 이용한 근사추정 기법이 사용되었다. 수치적인 예에서는 Musa의 T1 자료를 이용하여 모수 및 신뢰도를 추정한 수치 결과론 나열하였다.

일반 순서 통계량을 이용한 소프트웨어 신뢰확률 중첩모형에 관한 베이지안 접근에 관한 연구 (A Study on Bayesian Approach of Software Stochastic Reliability Superposition Model using General Order Statistics)

  • 이병수;김희철;백수기;정관희;윤주용
    • 한국정보처리학회논문지
    • /
    • 제6권8호
    • /
    • pp.2060-2071
    • /
    • 1999
  • 소프트웨어 시스템이 복잡해지면 고장의 원인이 하나의 강도함수에 의해서만 일어나지 않고 여러 원인이 중첩되어 발생할 수 있다. 이러한 복잡한 시스템에 의한 우도함수의 계산상의 어려움 때문에 반복표본을 이용하는 깁스 샘플링 기법이 고려되었다. 관찰된 고장시점은 중첩모형으로 표현이 가능한 잠재(latent)변수들을 이용하여 깁스 알고리즘을 적용하였다. 단순모형과 중첩모형의 비교를 위해 사후베이즈 요인과 상대오차의 합을 이용하여 모형선택을 시도하였다. 수치적인 예에서 GOS 속성을 가진 Goel-Okumoto 모형과 Weibull 모형을 선택하고 NHPP의 자료는 Lewis와 Shedler[25]에 의해 제시된 Thining 알고리즘을 이용하여 발생된 자료를 이용하고 사전분포는 상대적으로 확산분포(diffuse priors)를 이용한 모수추정과 사후베이즈요인과 상대오차를 이용한 모형선택을 한 결과 단순모형들 보다 중첩모형이 좋은 형으로 간주할 수 있음을 보여 주었다.

  • PDF