• 제목/요약/키워드: Bayesian 모형

Search Result 400, Processing Time 0.032 seconds

Optimum Climate Change Scenario Estimation via Hierarchical Bayesian Model : Using CORDEX Scenarios (계층적 베이지안 모델을 통한 최적 기후변화 시나리오 추정 : CORDEX 시나리오 사용)

  • Jung, Min-Kyu;Kim, Yong-Tak;Kim, Hyeon-Muk;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.168-168
    • /
    • 2018
  • 최근 기후변화로 인하여 전 세계적으로 과거 강우사상에서 확인되지 않는 극치사상이 빈번하게 관측되고 있으며 이에 따른 피해도 증가하고 있다. 미래의 기상학적 변동성 및 기후변화 영향은 지구순환모형 (General Circulation Models, GCM)을 통해 구체화되며 가장 일반적인 기후변화 전망자료로서 활용된다. 그러나 산정된 기후변화 시나리오마다 서로 그 특성에 차이가 있으며 이러한 이유로 다양한 원인으로 인해 큰 변동성을 가지는 미래 극치강우를 하나의 시나리오로 분석하기에는 무리가 있다. 또한 다양한 시나리오를 통해 분석한 결과값이 상이하며 이러한 시나리오별 산정 결과의 차이는 사용자에게 혼란을 야기할 수 있어 이를 하나의 결과로 나타낼 필요성이 있으나 정량적인 대푯값을 얻기 위해 특정 시나리오를 선택하는 것은 신뢰성에 문제가 있다. 본 연구에서는 시나리오들을 정량적 지표에 의거하여 혼합된 하나의 시나리오로 표출하고자 하였다. CORDEX-RCMs 시나리오 중 HadGEM3-RA, RegCM, SNU_WRF 및 GRIMs를 입력 자료로 하여 다중모형앙상블(Multi-Model Ensemble, MME)을 통해 낙동강 유역의 극치강우에 대한 하나의 최적 기후변화 시나리오를 도출하고자 하였으며 계층적 베이지안 (Hierarchical Bayesian Model, HBM) 기법을 통하여 기후변화 시나리오에 내제된 불확실성에 대한 정량적인 해석을 수행하였다.

  • PDF

Development of a nonstationary regional frequency analysis model for drought (비정상성 가뭄 지역빈도해석 모형 개발)

  • Min-Kyu Jung;Pamela Sofia Fabian;Minwoo Park;Hyun-Han Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.272-272
    • /
    • 2023
  • 기후변화로 인해 많은 경우 강수량은 증가할 것으로 전망되지만 시공간적 편차 또한 커짐으로써 가뭄 위험은 증가할 것으로 예상된다. 가뭄 위험도 평가는 강수량, 유출량 등 수문자료로부터 추출한 가뭄변량의 빈도해석을 통해 이루어질 수 있다. 빈도해석의 대상이 되는 수문변량의 통계적 속성이 일정하게 유지되는 정상성의 가정은 기존 빈도해석 방법의 핵심이 되지만, 최근 기후변화로 인한 수문변량의 통계적 특성 변화가 발생할 것으로 예상되기 때문에 이러한 비정상성의 특성을 빈도해석 시 고려할 필요가 있다. 자료의 비정상성을 평가하는데 짧은 기록을 갖는 자료로부터 변화 추세를 신뢰성 있게 평가하는 것은 어려움이 크다. 이러한 점에서 지점자료를 통합적으로 활용할 수 있는 지역빈도해석 절차 도입을 통해 해석 결과에 신뢰성을 확보하는 것이 합리적이다. 본 연구에서는 유역단위에서 가뭄의 지속기간과 심도 사이의 상호의존성을 고려하기 위해 이변량 Copula 함수 기반 가뭄 지역빈도해석을 도입했으며, 두 가뭄변량의 주변확률분포의 매개변수는 시간에 따른 함수로 가정하였다. 모형의 모든 매개변수는 계층적 Bayesian 모형을 통해 동시에 추정하였다. 최종적으로 주어진 가뭄빈도에 해당하는 시간에 따라 변화하는 가뭄 위험을 평가하였다.

  • PDF

Development of a nonstationary regional frequency analysis model (비정상성 지역빈도해석 모형 개발)

  • Jung, Min-Kyu;Moon, Jangwon;Kim, Yun-Sung;Park, Sungsu;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.433-433
    • /
    • 2022
  • 수자원 관리를 위한 설계수문량의 산정은 수문자료의 통계적 특성을 고려한 빈도해석을 통해 이루어지며, 대상 관측지점에 대해 개별적으로 수행되는 지점빈도해석과 수문학적으로 동질하다고 판단되는 지점들의 자료를 동시에 고려하는 지역빈도해석으로 분류된다. 기후변화에 의한 미래 수문량의 변동성을 고려하기 위해 비정상성 빈도해석이 요구되나 짧은 기록을 갖는 수문자료로부터 정확한 변화 추세를 평가하기 어렵다. 이에 따라 지역빈도해석을 통해 자료를 확충함으로써 자료에 대한 신뢰성을 확보하고 지역 전체에 대해 대표성을 갖는 확률수문량을 산정하는 것이 합리적이다. 본 연구에서는 극치강수량의 지역빈도해석에서 비정상성을 고려하기 위해 단순선형회귀 모형을 통해 시간항에 대한 강수량의 경향성을 탐지하였다. 계층적 Bayesian 모형을 통해 Partial Pooling 기법을 적용함으로써 기존 L-모멘트 방법(complete pooling)에서 고려하지 못하는 개별지역의 강수 특성을 고려하였으며 불확실성을 정량화하였다. 한강 유역 18개 지점의 극치강수량에 대해 비정상성 평가 결과 대부분 지점에서 양의 기울기를 확인하였으며 미래 빈도별 확률강수량의 증가율을 제시한다.

  • PDF

Korean speech recognition using deep learning (딥러닝 모형을 사용한 한국어 음성인식)

  • Lee, Suji;Han, Seokjin;Park, Sewon;Lee, Kyeongwon;Lee, Jaeyong
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.213-227
    • /
    • 2019
  • In this paper, we propose an end-to-end deep learning model combining Bayesian neural network with Korean speech recognition. In the past, Korean speech recognition was a complicated task due to the excessive parameters of many intermediate steps and needs for Korean expertise knowledge. Fortunately, Korean speech recognition becomes manageable with the aid of recent breakthroughs in "End-to-end" model. The end-to-end model decodes mel-frequency cepstral coefficients directly as text without any intermediate processes. Especially, Connectionist Temporal Classification loss and Attention based model are a kind of the end-to-end. In addition, we combine Bayesian neural network to implement the end-to-end model and obtain Monte Carlo estimates. Finally, we carry out our experiments on the "WorimalSam" online dictionary dataset. We obtain 4.58% Word Error Rate showing improved results compared to Google and Naver API.

Bayesian Prediction Inferences for the Burr Model Under the Random Censoring (랜덤중단(中斷)된 Burr모형(模型)에서 베이지안 예측추론(豫測推論))

  • Sohn, Joong-K.;Ko, Jeong-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.4
    • /
    • pp.109-120
    • /
    • 1993
  • Using a noninformative prior and a gamma prior, the Bayesian predictive density and the prediction intervals for a future observation or the p-th order statistic of n' future observations from the Burr distribution have been obtained. In additions, we examine the sensitivities of the results to the choice of model.

  • PDF

Laplace-Metropolis Algorithm for Variable Selection in Multinomial Logit Model (Laplace-Metropolis알고리즘에 의한 다항로짓모형의 변수선택에 관한 연구)

  • 김혜중;이애경
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.1
    • /
    • pp.11-23
    • /
    • 2001
  • This paper is concerned with suggesting a Bayesian method for variable selection in multinomial logit model. It is based upon an optimal rule suggested by use of Bayes rule which minimizes a risk induced by selecting the multinomial logit model. The rule is to find a subset of variables that maximizes the marginal likelihood of the model. We also propose a Laplace-Metropolis algorithm intended to suggest a simple method forestimating the marginal likelihood of the model. Based upon two examples, artificial data and empirical data examples, the Bayesian method is illustrated and its efficiency is examined.

  • PDF

Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data (영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용)

  • Lim, Ah-Kyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.505-519
    • /
    • 2006
  • We consider zero-inflated count data, which is discrete count data but has too many zeroes compared to the Poisson distribution. Zero-inflated data can be found in various areas. Despite its increasing importance in practice, appropriate statistical inference on zero-inflated data is limited. Classical inference based on a large number theory does not fit unless the sample size is very large. And regular Poisson model shows lack of St due to many zeroes. To handle the difficulties, a mixture of distributions are considered for the zero-inflated data. Specifically, a mixture of a point mass at zero and a Poisson distribution is employed for the data. In addition, when there exist meaningful covariates selected to the response variable, loglinear link is used between the mean of the response and the covariates in the Poisson distribution part. We propose a Bayesian inference for the zero-inflated Poisson regression model by using a Markov Chain Monte Carlo method. We applied the proposed method to a Korean oral hygienic data and compared the inference results with other models. We found that the proposed method is superior in that it gives small parameter estimation error and more accurate predictions.

Development of a surrogate model based on temperature for estimation of evapotranspiration and its use for drought index applicability assessment (증발산 산정을 위한 온도기반의 대체모형 개발 및 가뭄지수 적용성 평가)

  • Kim, Ho-Jun;Kim, Kyoungwook;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.969-983
    • /
    • 2021
  • Evapotranspiration, one of the hydrometeorological components, is considered an important variable for water resource planning and management and is primarily used as input data for hydrological models such as water balance models. The FAO56 PM method has been recommended as a standard approach to estimate the reference evapotranspiration with relatively high accuracy. However, the FAO56 PM method is often challenging to apply because it requires considerable hydrometeorological variables. In this perspective, the Hargreaves equation has been widely adopted to estimate the reference evapotranspiration. In this study, a set of parameters of the Hargreaves equation was calibrated with relatively long-term data within a Bayesian framework. Statistical index (CC, RMSE, IoA) is used to validate the model. RMSE for monthly results reduced from 7.94 ~ 24.91 mm/month to 7.94 ~ 24.91 mm/month for the validation period. The results confirmed that the accuracy was significantly improved compared to the existing Hargreaves equation. Further, the evaporative demand drought index (EDDI) based on the evaporative demand (E0) was proposed. To confirm the effectiveness of the EDDI, this study evaluated the estimated EDDI for the recent drought events from 2014 to 2015 and 2018, along with precipitation and SPI. As a result of the evaluation of the Han-river watershed in 2018, the weekly EDDI increased to more than 2 and it was confirmed that EDDI more effectively detects the onset of drought caused by heatwaves. EDDI can be used as a drought index, particularly for heatwave-driven flash drought monitoring and along with SPI.

Bayesian Model based Korean Semantic Role Induction (베이지안 모형 기반 한국어 의미역 유도)

  • Won, Yousung;Lee, Woochul;Kim, Hyungjun;Lee, Yeonsoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.111-116
    • /
    • 2016
  • 의미역은 자연어 문장의 서술어와 관련된 논항의 역할을 설명하는 것으로, 주어진 서술어에 대한 논항인식(Argument Identification) 및 분류(Argument Labeling)의 과정을 거쳐 의미역 결정(Semantic Role Labeling)이 이루어진다. 이를 위해서는 격틀 사전을 이용한 방법이나 말뭉치를 이용한 지도 학습(Supervised Learning) 방법이 주를 이루고 있다. 이때, 격틀 사전 또는 의미역 주석 정보가 부착된 말뭉치를 구축하는 것은 필수적이지만, 이러한 노력을 최소화하기 위해 본 논문에서는 비모수적 베이지안 모델(Nonparametric Bayesian Model)을 기반으로 서술어에 가능한 의미역을 추론하는 비지도 학습(Unsupervised Learning)을 수행한다.

  • PDF

Bayesian Hierachical Model using Gibbs Sampler Method: Field Mice Example (깁스 표본 기법을 이용한 베이지안 계층적 모형: 야생쥐의 예)

  • Song, Jae-Kee;Lee, Gun-Hee;Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.247-256
    • /
    • 1996
  • In this paper, we applied bayesian hierarchical model to analyze the field mice example introduced by Demster et al.(1981). For this example, we use Gibbs sampler method to provide the posterior mean and compared it with LSE(Least Square Estimator) and MLR(Maximum Likelihood estimator with Random effect) via the EM algorithm.

  • PDF