In this paper, we consider a seemingly unrelated regression (SUR) model and propose a nonparametric Bayesian approach to SUR with a Dirichlet process mixture of normals for modeling an unknown error distribution. Posterior distributions are derived based on the proposed model, and the posterior inference is performed via Markov chain Monte Carlo methods based on the collapsed Gibbs sampler of a Dirichlet process mixture model. We present a simulation study to assess the performance of the model. We also apply the model to precipitation data over South Korea.
Journal of the Korean Data and Information Science Society
/
v.22
no.3
/
pp.459-466
/
2011
This article addresses robust Bayesian modeling for meta analysis which derives general conclusion by combining independently performed individual studies. Specifically, we propose hierarchical Bayesian models with unknown variances for meta analysis under priors which are scale mixtures of normal, and thus have tail heavier than that of the normal. For the numerical analysis, we use the Gibbs sampler for calculating Bayesian estimators and illustrate the proposed methods using actual data.
Journal of the Korean Data and Information Science Society
/
v.12
no.2
/
pp.11-25
/
2001
There are several algorithms for classification in modeling relations, patterns, and rules which exist in data. We learn to classify objects on the basis of instances presented to us, not by being given a set of classification rules. The Bayesian learning uses the probability distribution to express our knowledge about unknown parameters and update our knowledge by the law of probability as the evidence gathered from data. Also, the neural network models are designed for predicting an unknown category or quantity on the basis of known attributes by training. In this paper, we compare the misclassification error rates of Bayesian Neural Network method with those of other classification algorithms, CHAID, CART, and QUBST using several data sets.
Kim, Jin-Guk;Na, Bong-Kil;Kwon, Young-Jun;Kwon, Hyun-Han
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.206-206
/
2016
최근 기상변동성 증가 및 기후변화로 인해 기존 한반도의 기상패턴과 다른 이상강우 현상이 증가하고 있다. 이러한 변동성 증가는 수자원 계획을 수립하는데 있어 불확실성을 가중시키기고 있다. 이러한 점에서 수문 시계열의 변화양상을 효과적으로 인지할 수 있으며, 유역단위에서 일관된 변화를 평가할 수 있는 변동성 분석 개발이 필요하다. 이에 본 연구에서는 기존 변동성 분석방법에 계층적 베이지안(Hierarchical Bayesian) 기법을 연계하여 유역단위에서 변동점 해석을 위한 모형을 개발하였다. 한강유역의 30년 이상의 강우 자료를 활용하여 연강우량 자료를 구축하였으며, 본 연구를 통해 개발된 모형의 적합성을 평가하였다. 분석결과, 약 2000년대를 기준으로 강우의 변화 양상을 확인할 수 있었으며, 과거에 비해 강우의 증가 특성을 효과적으로 평가할 수 있었다. 이와 같은 수문기상자료에 대한 변동성 분석은 미래에 발생 가능한 홍수나 가뭄과 같은 사상을 모의함에 있어 효율적으로 활용될 수 있을 것으로 판단된다.
Journal of the Korea Society of Computer and Information
/
v.14
no.7
/
pp.1-8
/
2009
In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. The optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement is generally accepted. The Bayesian parametric inference of model using log Poisson execution time employ tool of Markov chain(Gibbs sampling and Metropolis algorithm). In a numerical example by T1 data was illustrated. make out estimating software optimal release time from the maximum likelihood estimation and Bayesian parametric estimation.
Kim, Tae-Jeong;Kim, Jang-Gyeong;Kim, Ho-Jun;Song, Jae-Hyun;Kwon, Hyun-Han
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.225-225
/
2022
수자원의 계획 및 설계에 활용되는 홍수량 산정 방법은 홍수량 빈도해석 방법과 강우-유출 모형에 의한 방법으로 구분된다. 홍수량 빈도해석에 의한 방법은 홍수량 자료를 직접 빈도해석 하여 확률홍수량을 산정하며 이론적으로 가장 정확한 방법으로 평가된다. 기존의 홍수량 해석은 자료의 제약으로 인하여 실측유량의 직접 빈도해석은 한계가 있었으나 과거부터 국가적으로 수문조사를 수행하여 10년 이상의 실측유량 자료를 확보할 수 있는 수준에 도달하였다. 본 연구는 수위-유량 관계 곡선식을 통하여 안정적으로 확보된 실측유량 자료를 활용하여 홍수량 빈도해석을 수행하였다. 홍수량 빈도해석을 위하여 Bayesian 기법을 적용하여 매개변수를 산정하고 빈도별 홍수량의 불확실성을 정량화하였다. 확률홍수량 산정 결과는 장기간의 강우량 자료를 적용하여 강우-유출모형으로 산정된 홍수량과 근접한 것을 확인하였다. 수문조사를 통하여 장기간의 실측유량 자료를 활용하여 다각적인 관점으로 수문해석을 가능할 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1147-1151
/
2009
In this study, we address the problem of producing probability forecasts of summer seasonal rainfall, on the basis of Hindcast experiments from a ensemble of GCMs(cwb, gcps, gdaps, metri, msc_gem, msc_gm2, msc_gm3, msc_sef and ncep). An advanced Hierarchical Bayesian weighting scheme is developed and used to combine nine GCMs seasonal hindcast ensembles. Hindcast period is 23 years from 1981 to 2003. The simplest approach for combining GCM forecasts is to weight each model equally, and this approach is referred to as pooled ensemble. This study proposes a more complex approach which weights the models spatially and seasonally based on past model performance for rainfall. The Bayesian approach to multi-model combination of GCMs determines the relative weights of each GCM with climatology as the prior. The weights are chosen to maximize the likelihood score of the posterior probabilities. The individual GCM ensembles, simple poolings of three and six models, and the optimally combined multimodel ensemble are compared.
Kim, Young-Oh;Sung, Jang-Hyun;Seo, Seung-Beom;Lee, Kyoung-Teak
한국방재학회:학술대회논문집
/
2010.02a
/
pp.53.2-53.2
/
2010
국내 홍수빈도해석 지침서 제공을 위한 기초 연구로서 미국 홍수빈도해석 지침서인 Bulletin 17B과 같이 국내 적합한 홍수빈도해석 기법을 제시하고자 하였다. 홍수빈도해석 지침서의 핵심은 확률분포형과 매개변수 추정법을 제시하는 것이며 이에 GEV(Generalized Extreme Value), GLO(Generalized Logistic) 분포, B-GLS(Bayesian Generalized Least Square) 기법을 대상으로 다양한 연구를 수행하였다. B-GLS 기법을 이용하여, 국내 대유역에 골고루 위치하며 댐의 영향을 받지 않는 31개 지점의 연최대 일유량 시계열의 L-변동계수(L-moment coefficient variation)와 L-왜도계수(L-moment coefficient skewness)를 추정할 수 있는 회귀모형을 제안하였다. 위 회귀모형을 구성하기 위한 유역특성으로는 유역면적, 유역경사, 유역평균강우 등을 사용하였다. Bayesian-GLS(B-GLS) 적용 결과를 OLS(Ordinary Least Square) 및 B-GLS 기법에서 지점간의 상관관계를 고려하지 않는 Bayesian-WLS(Weighted Least Square)와 비교 평가하여 그 우수성을 입증하였다. 따라서 본 연구에서 제안된 B-GLS에 의한 지역회귀모형은 국내의 미계측유역이나 또는 관측 길이가 짧은 계측유역의 홍수빈도분석을 위해 매우 유용할 것으로 기대된다. 또한 수행된 연구의 내용을 공론화하는 노력이 계속된다면 공감대가 형성된 가이드라인을 제정되는데 일조를 하리라 확신한다.
Typical business cycle models have difficulties in explaining key macroeconomic labor market variables, such as employment and unemployment, as they usually consider labor hour choices only. In this paper, we introduce labor market search and matching frictions into a New Keynesian nominal rigidity model and estimate it by Bayesian methods to examine the dynamics of the key labor market variables and business cycles in Korea. The results show that unemployment rates are largely explained by technology shocks, which affect the labor demand side, as well as labor supply shocks. In addition, wage bargaining shocks originating from the bargaining process between firms and workers have non-negligible negative effects on output and employment growth, and careful measures need to be taken to limit their adverse effects.
Kim, Tae-Jeong;So, Byung-Jin;Ryou, Min-Suk;Kwon, Hyun-Han
Journal of Korea Water Resources Association
/
v.49
no.4
/
pp.315-325
/
2016
Generally, a natural river discharge is highly regulated by the hydraulic structures, and the regulated flow is substantially different from natural inflow characteristics for the use of water resources planning. The natural inflow data are necessarily required for hydrologic analysis and water resources planning. This study aimed to develop an integrated model for more reliable simulation of daily dam inflow. First, a piecewise Kernel-Pareto distribution was used for rainfall simulation model, which can more effectively reproduce the low order moments (e.g. mean and median) as well as the extremes. Second, a Bayesian Markov Chain Monte Carlo scheme was applied for the SAC-SMA rainfall-runoff model that is able to quantitatively assess uncertainties associated with model parameters. It was confirmed that the proposed modeling scheme is capable of reproducing the underlying statistical properties of discharge, and can be further used to provide a set of plausible scenarios for water budget analysis in water resources planning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.