• Title/Summary/Keyword: Bayes method

Search Result 365, Processing Time 0.025 seconds

Hand Gesture Interface Using Mobile Camera Devices (모바일 카메라 기기를 이용한 손 제스처 인터페이스)

  • Lee, Chan-Su;Chun, Sung-Yong;Sohn, Myoung-Gyu;Lee, Sang-Heon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.621-625
    • /
    • 2010
  • This paper presents a hand motion tracking method for hand gesture interface using a camera in mobile devices such as a smart phone and PDA. When a camera moves according to the hand gesture of the user, global optical flows are generated. Therefore, robust hand movement estimation is possible by considering dominant optical flow based on histogram analysis of the motion direction. A continuous hand gesture is segmented into unit gestures by motion state estimation using motion phase, which is determined by velocity and acceleration of the estimated hand motion. Feature vectors are extracted during movement states and hand gestures are recognized at the end state of each gesture. Support vector machine (SVM), k-nearest neighborhood classifier, and normal Bayes classifier are used for classification. SVM shows 82% recognition rate for 14 hand gestures.

Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels

  • Podolsky, Maxim D;Barchuk, Anton A;Kuznetcov, Vladimir I;Gusarova, Natalia F;Gaidukov, Vadim S;Tarakanov, Segrey A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.835-838
    • /
    • 2016
  • Background: Lung cancer remains one of the most common cancers in the world, both in terms of new cases (about 13% of total per year) and deaths (nearly one cancer death in five), because of the high case fatality. Errors in lung cancer type or malignant growth determination lead to degraded treatment efficacy, because anticancer strategy depends on tumor morphology. Materials and Methods: We have made an attempt to evaluate effectiveness of machine learning algorithms in the task of lung cancer classification based on gene expression levels. We processed four publicly available data sets. The Dana-Farber Cancer Institute data set contains 203 samples and the task was to classify four cancer types and sound tissue samples. With the University of Michigan data set of 96 samples, the task was to execute a binary classification of adenocarcinoma and non-neoplastic tissues. The University of Toronto data set contains 39 samples and the task was to detect recurrence, while with the Brigham and Women's Hospital data set of 181 samples it was to make a binary classification of malignant pleural mesothelioma and adenocarcinoma. We used the k-nearest neighbor algorithm (k=1, k=5, k=10), naive Bayes classifier with assumption of both a normal distribution of attributes and a distribution through histograms, support vector machine and C4.5 decision tree. Effectiveness of machine learning algorithms was evaluated with the Matthews correlation coefficient. Results: The support vector machine method showed best results among data sets from the Dana-Farber Cancer Institute and Brigham and Women's Hospital. All algorithms with the exception of the C4.5 decision tree showed maximum potential effectiveness in the University of Michigan data set. However, the C4.5 decision tree showed best results for the University of Toronto data set. Conclusions: Machine learning algorithms can be used for lung cancer morphology classification and similar tasks based on gene expression level evaluation.

An Automatic Web Page Classification System Using Meta-Tag (메타 태그를 이용한 자동 웹페이지 분류 시스템)

  • Kim, Sang-Il;Kim, Hwa-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.4
    • /
    • pp.291-297
    • /
    • 2013
  • Recently, the amount of web pages, which include various information, has been drastically increased according to the explosive increase of WWW usage. Therefore, the need for web page classification arose in order to make it easier to access web pages and to make it possible to search the web pages through the grouping. Web page classification means the classification of various web pages that are scattered on the web according to the similarity of documents or the keywords contained in the documents. Web page classification method can be applied to various areas such as web page searching, group searching and e-mail filtering. However, it is impossible to handle the tremendous amount of web pages on the web by using the manual classification. Also, the automatic web page classification has the accuracy problem in that it fails to distinguish the different web pages written in different forms without classification errors. In this paper, we propose the automatic web page classification system using meta-tag that can be obtained from the web pages in order to solve the inaccurate web page retrieval problem.

Spatial Analysis of Air Pollution and Lung Cancer Incidence and Mortality in 7 Metropolitan Cities in Korea. (7대 광역시에서 대기오염과 폐암 발생 및 사망에 대한 공간 분석)

  • Hwang, Seung-Sik;Lee, Jin-Hee;Jung, Gyu-Won;Lim, Jeong-Hun;Kwon, Ho-Jang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.3
    • /
    • pp.233-238
    • /
    • 2007
  • Objectives : We aimed to assess the relationship between long-term exposure to air pollution and lung cancer in the Republic of Korea. Methods : Using the Annual Report of Ambient Air Quality in Korea, Annual Report of National Cancer Registration, and Annual Report on the Cause of Death Statistics, we calculated the standardized mortality ratio (SMR) and standardized incidence ratio (SIR) of lung cancer for both sexes in 74 areas from 7 Korean metropolitan cities. We performed random intercept, Poisson regression using empirical Bayes method. Results : Both SMRs and SIRs in the 7 metropolitan cities were higher in women than in men. Mean SIRs were 99.0 for males and 107.0 for females. The association between $PM_{10}$ and lung cancer risk differed according to gender. $PM_{10}$ was not associated with the risk of lung cancer in males, but both incidence and mortality of lung cancer were positively associated with $PM_{10}$ in females. The estimated percentage increases in the rate of female lung cancer mortality and incidence were 27% and 65% at the highest $PM_{10}$ category $({\geq}70\;{\mu}g/m^3)$, compared to the referent category $({\geq}50\;{\mu}g/m^3)$. Conclusions : Long-term exposure to $PM_{10}$ was significantly associated with female lung cancer incidence in 7 Korean metropolitan cities. Further study is undergoing to estimate the relative risk of $PM_{10}$ using multi-level analysis for controlling individual and regional confounders such as smoking and socioeconomic position.

Movie Popularity Classification Based on Support Vector Machine Combined with Social Network Analysis

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • Journal of Information Technology Services
    • /
    • v.16 no.3
    • /
    • pp.167-183
    • /
    • 2017
  • The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.

Statistical Life Prediction of Corroded Pipeline Using Bayesian Inference (베이지안 추론법을 이용한 부식된 배관의 통계적 수명예측)

  • Noh, Yoojeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2401-2406
    • /
    • 2015
  • Pipelines are used by large heavy industries to deliver various types of fluids. Since this is important to maintain the performance of large systems, it is necessary to accurately predict remaining life of the corroded pipeline. However, predicting the remaining life is difficult due to uncertainties in the associated variables, such as geometries, material properties, corrosion rate, etc. In this paper, a statistical method for predicting corrosion remaining life is proposed using Bayesian inference. To accomplish this, pipeline failure probability was calculated using prior information about pipeline failure pressure according to elapsed time, and the given experimental data based on Bayes' rule. The corrosion remaining life was calculated as the elapsed time with 10 % failure probability. Using 10 and 50 samples generated from random variables affecting the corrosion of the pipe, the pipeline failure probability was estimated, after which the estimated remaining useful life was compared with the assumed true remaining useful life.

Study of Computer Aided Diagnosis for the Improvement of Survival Rate of Lung Cancer based on Adaboost Learning (폐암 생존율 향상을 위한 아다부스트 학습 기반의 컴퓨터보조 진단방법에 관한 연구)

  • Won, Chulho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • In this paper, we improved classification performance of benign and malignant lung nodules by including the parenchyma features. For small pulmonary nodules (4-10mm) nodules, there are a limited number of CT data voxels within the solid tumor, making them difficult to process through traditional CAD(computer aided diagnosis) tools. Increasing feature extraction to include the surrounding parenchyma will increase the CT voxel set for analysis in these very small pulmonary nodule cases and likely improve diagnostic performance while keeping the CAD tool flexible to scanner model and parameters. In AdaBoost learning using naive Bayes and SVM weak classifier, a number of significant features were selected from 304 features. The results from the COPDGene test yielded an accuracy, sensitivity and specificity of 100%. Therefore proposed method can be used for the computer aided diagnosis effectively.

A Flexible Line-Fitting ICM Approach for Takbon Image Restoration (유연한 선부합 ICM 방식에 의한 탁본영상복원)

  • Hwang, Jae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.525-532
    • /
    • 2006
  • This paper proposes a new class of image restoration on the Ising modeled binary 'Takbon' image by the flexible line-fitting ICM(Iterated conditional modes) method. Basically 'Takbon' image need be divided into two extreme regions, information and background one due to its stroke combinations. The main idea is the line process, comparing with the conventional ICM approaches which were based on partially rectangular structured point process. For calculating geometrical mechanism, we have defined line-fitting functions at each current pixel array which form the set of linear lines with gradients and lengths. By applying the Bayes' decision to this set, the region of the current pixel is decided as one of the binary levels. In this case, their statistical reiteration for distinct tracking between intra and extra region offers a criterion to decide the attachment at each step. Finally simulations using the binary 'Takbon' image are provided to demonstrate the effectiveness of our new algorithm

Causal Inference Network of Genes Related with Bone Metastasis of Breast Cancer and Osteoblasts Using Causal Bayesian Networks

  • Park, Sung Bae;Chung, Chun Kee;Gonzalez, Efrain;Yoo, Changwon
    • Journal of Bone Metabolism
    • /
    • v.25 no.4
    • /
    • pp.251-266
    • /
    • 2018
  • Background: The causal networks among genes that are commonly expressed in osteoblasts and during bone metastasis (BM) of breast cancer (BC) are not well understood. Here, we developed a machine learning method to obtain a plausible causal network of genes that are commonly expressed during BM and in osteoblasts in BC. Methods: We selected BC genes that are commonly expressed during BM and in osteoblasts from the Gene Expression Omnibus database. Bayesian Network Inference with Java Objects (Banjo) was used to obtain the Bayesian network. Genes registered as BC related genes were included as candidate genes in the implementation of Banjo. Next, we obtained the Bayesian structure and assessed the prediction rate for BM, conditional independence among nodes, and causality among nodes. Furthermore, we reported the maximum relative risks (RRs) of combined gene expression of the genes in the model. Results: We mechanistically identified 33 significantly related and plausibly involved genes in the development of BC BM. Further model evaluations showed that 16 genes were enough for a model to be statistically significant in terms of maximum likelihood of the causal Bayesian networks (CBNs) and for correct prediction of BM of BC. Maximum RRs of combined gene expression patterns showed that the expression levels of UBIAD1, HEBP1, BTNL8, TSPO, PSAT1, and ZFP36L2 significantly affected development of BM from BC. Conclusions: The CBN structure can be used as a reasonable inference network for accurately predicting BM in BC.

Variational Bayesian multinomial probit model with Gaussian process classification on mice protein expression level data (가우시안 과정 분류에 대한 변분 베이지안 다항 프로빗 모형: 쥐 단백질 발현 데이터에의 적용)

  • Donghyun Son;Beom Seuk Hwang
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.115-127
    • /
    • 2023
  • Multinomial probit model is a popular model for multiclass classification and choice model. Markov chain Monte Carlo (MCMC) method is widely used for estimating multinomial probit model, but its computational cost is high. However, it is well known that variational Bayesian approximation is more computationally efficient than MCMC, because it uses subsets of samples. In this study, we describe multinomial probit model with Gaussian process classification and how to employ variational Bayesian approximation on the model. This study also compares the results of variational Bayesian multinomial probit model to the results of naive Bayes, K-nearest neighbors and support vector machine for the UCI mice protein expression level data.