• Title/Summary/Keyword: Bayes Factors

Search Result 107, Processing Time 0.023 seconds

Bayesian Hypothesis Testing for Two Lognormal Variances with the Bayes Factors

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1119-1128
    • /
    • 2005
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor and the fractional Bayes factor have been used to overcome this problem. In this paper, we suggest a Bayesian hypothesis testing based on the intrinsic Bayes factor and the fractional Bayes factor for the comparison of two lognormal variances. Using the proposed two Bayes factors, we demonstrate our results with some examples.

  • PDF

Default Bayes Factors for Testing the Equality of Poisson Population Means

  • Son, Young Sook;Kim, Seong W.
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.549-562
    • /
    • 2000
  • Default Bayes factors are computed to test the equality of one Poisson population mean and the equality of two independent Possion population means. As default priors are assumed Jeffreys priors, noninformative improper priors, and default Bayes factors such as three intrinsic Bayes factors of Berger and Pericchi(1996, 1998), the arithmetic, the median, and the geometric intrinsic Bayes factor, and the factional Bayes factor of O'Hagan(1995) are computed. The testing results by each default Bayes factor are compared with those by the classical method in the simulation study.

  • PDF

Intrinsic Priors for Testing Two Lognormal Means with the Fractional Bayes Factor

  • Moon, Gyoung-Ae
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.39-47
    • /
    • 2003
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So, it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor by Berger and Pericchi (1996) and the fractional Bayes factor by O'Hagan (1995) have been used to overcome this problems. This paper suggests intrinsic priors for testing the equality of two lognormal means, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factors. Using proposed intrinsic priors, we demonstrate our results with a simulated dataset.

  • PDF

Intrinsic Priors for Testing Two Lognormal Populations with the Fractional Bayes Factor

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.661-671
    • /
    • 2003
  • The Bayes factors with improper noninformative priors are defined only up to arbitrary constants. So, it is known that Bayes factors are not well defined due to this arbitrariness in Bayesian hypothesis testing and model selections. The intrinsic Bayes factor by Berger and Pericchi (1996) and the fractional Bayes factor by O'Hagan (1995) have been used to overcome this problems. This paper suggests intrinsic priors for testing the equality of two lognormal means, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factors. Using proposed intrinsic priors, we demonstrate our results with real example and a simulated dataset.

  • PDF

Intrinsic Priors for Testing Two Normal Means with the Default Bayes Factors

  • Jongsig Bae;Kim, Hyunsoo;Kim, Seong W.
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.443-454
    • /
    • 2000
  • In Bayesian model selection or testing problems of different dimensions, the conventional Bayes factors with improper noninformative priors are not well defined. The intrinsic Bayes factor and the fractional Bayes factor are used to overcome such problems by using a data-splitting idea and fraction, respectively. This article addresses a Bayesian testing for the comparison of two normal means with unknown variance. We derive proper intrinsic priors, whose Bayes factors are asymptotically equivalent to the corresponding fractional Bayes factor. We demonstrate our results with two examples.

  • PDF

A Multiple Test of a Poisson Mean Parameter Using Default Bayes Factors (디폴트 베이즈인자를 이용한 포아송 평균모수에 대한 다중검정)

  • 김경숙;손영숙
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.2
    • /
    • pp.118-129
    • /
    • 2002
  • A multiple test of a mean parameter, λ, in the Poisson model is considered using the Bayes factor. Under noninformative improper priors, the intrinsic Bayes factor(IBF) of Berger and Pericchi(1996) and the fractional Bayes factor(FBF) of O'Hagan(1995) called as the default or automatic Bayes factors are used to select one among three models, M$_1$: λ< $λ_0, M$_2$: λ= $λ_0, M$_3$: λ> $λ_0. Posterior probability of each competitive model is computed using the default Bayes factors. Finally, theoretical results are applied to simulated data and real data.

Intrinsic Bayes Factors for Exponential Model Comparison with Censored Data

  • Kim, Dal-Ho;Kang, Sang-Gil;Kim, Seong W.
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.123-135
    • /
    • 2000
  • This paper addresses the Bayesian hypotheses testing for the comparison of exponential population under type II censoring. In Bayesian testing problem, conventional Bayes factors can not typically accommodate the use of noninformative priors which are improper and are defined only up to arbitrary constants. To overcome such problem, we use the recently proposed hypotheses testing criterion called the intrinsic Bayes factor. We derive the arithmetic, expected and median intrinsic Bayes factors for our problem. The Monte Carlo simulation is used for calculating intrinsic Bayes factors which are compared with P-values of the classical test.

  • PDF

Bayes factors for accelerated life testing models

  • Smit, Neill;Raubenheimer, Lizanne
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.513-532
    • /
    • 2022
  • In this paper, the use of Bayes factors and the deviance information criterion for model selection are compared in a Bayesian accelerated life testing setup. In Bayesian accelerated life testing, the most used tool for model comparison is the deviance information criterion. An alternative and more formal approach is to use Bayes factors to compare models. However, Bayesian accelerated life testing models with more than one stressor often have mathematically intractable posterior distributions and Markov chain Monte Carlo methods are employed to obtain posterior samples to base inference on. The computation of the marginal likelihood is challenging when working with such complex models. In this paper, methods for approximating the marginal likelihood and the application thereof in the accelerated life testing paradigm are explored for dual-stress models. A simulation study is also included, where Bayes factors using the different approximation methods and the deviance information are compared.

Instrinsic Priors for Testing Two Exponential Means with the Fractional Bayes Factor

  • Kim, Seong W.;Kim, Hyunsoo
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.395-405
    • /
    • 2000
  • This article addresses the Bayesian hypothesis testing for the comparison of two exponential mans. Conventional Bayes factors with improper non-informative priors are into well defined. The fractional Byes factor(FBF) of O'Hagan(1995) is used to overcome such as difficulty. we derive proper intrinsic priors, whose Bayes factors are asymptotically equivalent to the corresponding FBFs. We demonstrate our results with three examples.

  • PDF

Radical Probabilism and Bayes Factors (원초적 확률주의와 베이즈 인수)

  • Park, Il-Ho
    • Korean Journal of Logic
    • /
    • v.11 no.2
    • /
    • pp.93-125
    • /
    • 2008
  • The radical probabilitists deny that propositions represent experience. However, since the impact of experience should be propagated through our belief system and be communicated with other agents, they should find some alternative protocols which can represent the impact of experience. The useful protocol which the radical probabilistists suggest is the Bayes factors. It is because Bayes factors factor out the impact of the prior probabilities and satisfy the requirement of commutativity. My main challenge to the radical probabilitists is that there is another useful protocol, q(E|$N_p$) which also factors out the impact of the prior probabilities and satisfies the requirement of commutativity. Moreover I claim that q(E|$N_p$) has a pragmatic virtue which the Bayes factors have not.

  • PDF