• Title/Summary/Keyword: Bayes Classifier

Search Result 150, Processing Time 0.022 seconds

An Auto-blogging System based Context Model for Micro-blogging Service (마이크로 블로깅 서비스를 지원하기 위한 컨텍스트 모델 기반 자동 블로깅 시스템)

  • Park, Jae-Min;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.10 no.4
    • /
    • pp.341-346
    • /
    • 2012
  • Social network service is service that enables the human network to be built up on web. It is important to record users' information simply and establish the network with people based on the information to provide with the social network service effectively. But it is very troublesome work for the user to input his or her own information on the mobile environment. In this paper we suggested a system which classifies users' behavior using context and creates blogging sentences automatically after inferring the destination. For this, users' behavior is classified and the destination is inferred with the sequence matching method using Naive Bayes classification. Then sentences which are suitable for situation is created by arranging the processed context using the structure of 5W1H. The system was evaluated satisfaction degree by comparing the created sentences based on actually collected data with users' intension and got accuracy rate of 88.73%.

Feature Extraction of Web Document using Association Word Mining (연관 단어 마이닝을 사용한 웹문서의 특징 추출)

  • 고수정;최준혁;이정현
    • Journal of KIISE:Databases
    • /
    • v.30 no.4
    • /
    • pp.351-361
    • /
    • 2003
  • The previous studies to extract features for document through word association have the problems of updating profiles periodically, dealing with noun phrases, and calculating the probability for indices. We propose more effective feature extraction method which is using association word mining. The association word mining method, by using Apriori algorithm, represents a feature for document as not single words but association-word-vectors. Association words extracted from document by Apriori algorithm depend on confidence, support, and the number of composed words. This paper proposes an effective method to determine confidence, support, and the number of words composing association words. Since the feature extraction method using association word mining does not use the profile, it need not update the profile, and automatically generates noun phrase by using confidence and support at Apriori algorithm without calculating the probability for index. We apply the proposed method to document classification using Naive Bayes classifier, and compare it with methods of information gain and TFㆍIDF. Besides, we compare the method proposed in this paper with document classification methods using index association and word association based on the model of probability, respectively.

Junk-Mail Filtering by Mail Address Validation and Title-Content Weighting (메일 주소 유효성과 제목-내용 가중치 기법에 의한 스팸 메일 필터링)

  • Kang Seung-Shik
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.255-263
    • /
    • 2006
  • It is common that a junk mail has an inconsistency of mail addresses between those of the mail headers and the mail recipients. In addition, users easily know that an email is a junk or legitimate mail only by looking for the title of the email. In this paper, we tried to apply the filtering classifiers of mail address validation check and the combination method of title-content weighting to improve the performance of junk mail filtering system. In order to verify the effectiveness of the proposed method, we performed an experiment by applying them to Naive Bayesian classifier. The experiment includes the unit testing and the combination of the filtering techniques. As a result, we found that our method improved 11.6% of recall and 2.1% of precision that it contributed the enhancement of the junk mail filtering system.

  • PDF

Movie Popularity Classification Based on Support Vector Machine Combined with Social Network Analysis

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • Journal of Information Technology Services
    • /
    • v.16 no.3
    • /
    • pp.167-183
    • /
    • 2017
  • The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.

A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier (영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축)

  • Kim, Yuyoung;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.71-89
    • /
    • 2016
  • Sentiment analysis is used for identifying emotions or sentiments embedded in the user generated data such as customer reviews from blogs, social network services, and so on. Various research fields such as computer science and business management can take advantage of this feature to analyze customer-generated opinions. In previous studies, the star rating of a review is regarded as the same as sentiment embedded in the text. However, it does not always correspond to the sentiment polarity. Due to this supposition, previous studies have some limitations in their accuracy. To solve this issue, the present study uses a supervised sentiment classification model to measure a more accurate sentiment polarity. This study aims to propose an advanced sentiment classifier and to discover the correlation between movie reviews and box-office success. The advanced sentiment classifier is based on two supervised machine learning techniques, the Support Vector Machines (SVM) and Feedforward Neural Network (FNN). The sentiment scores of the movie reviews are measured by the sentiment classifier and are analyzed by statistical correlations between movie reviews and box-office success. Movie reviews are collected along with a star-rate. The dataset used in this study consists of 1,258,538 reviews from 175 films gathered from Naver Movie website (movie.naver.com). The results show that the proposed sentiment classifier outperforms Naive Bayes (NB) classifier as its accuracy is about 6% higher than NB. Furthermore, the results indicate that there are positive correlations between the star-rate and the number of audiences, which can be regarded as the box-office success of a movie. The study also shows that there is the mild, positive correlation between the sentiment scores estimated by the classifier and the number of audiences. To verify the applicability of the sentiment scores, an independent sample t-test was conducted. For this, the movies were divided into two groups using the average of sentiment scores. The two groups are significantly different in terms of the star-rated scores.

A Study on automatic assignment of descriptors using machine learning (기계학습을 통한 디스크립터 자동부여에 관한 연구)

  • Kim, Pan-Jun
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.1 s.59
    • /
    • pp.279-299
    • /
    • 2006
  • This study utilizes various approaches of machine learning in the process of automatically assigning descriptors to journal articles. The effectiveness of feature selection and the size of training set were examined, after selecting core journals in the field of information science and organizing test collection from the articles of the past 11 years. Regarding feature selection, after reducing the feature set using $x^2$ statistics(CHI) and criteria that prefer high-frequency features(COS, GSS, JAC), the trained Support Vector Machines(SVM) performed the best. With respect to the size of the training set, it significantly influenced the performance of Support Vector Machines(SVM) and Voted Perceptron(VTP). However, it had little effect on Naive Bayes(NB).

The Impact of Comments on Music Download and Streaming: A Text Mining Analysis (댓글이 음원 판매량에 미치는 차별적 영향에 관한 텍스트마이닝 분석)

  • Park, Myeong-Seok;Kwon, Young-Jin;Lee, Sang-Yong Tom
    • Knowledge Management Research
    • /
    • v.19 no.2
    • /
    • pp.91-108
    • /
    • 2018
  • This study mainly focused on measuring the impact of comments for a particular song on the number of streamings and downloads. We modeled multiple regression equations to perform this analysis. We chose digital music market for the object of analysis because of its inherent characteristics, such as experience goods, high bandwagon effect, and so on. We carefully utilized text mining technique in accordance with the algorithm of Naïve Bayes classifier to distinguish whether a comment for a piece of music be regarded as positive or negative. In addition, we used 'size of agency' and 'existence of hit song' as moderating variables. The reason for usage of those variables is that those are assumed to affect users' decision for selecting particular song especially when downloading or streaming via music sites. We found empirical evidences that positive comments for a particular song increase the number of both downloads and streamings. However, positive comments may decrease the number of downloads when the size of agency of the artist is big. As a result, we were able to say that a positive comment for a particular song functioned as 'word-of-mouth' effect, inducing other users' behavioral response. We also found that other features of an artist such as size of the agency that the artist belongs to functioned as an external factor along with feature of the song itself.

A Study on Efficient Market Hypothesis to Predict Exchange Rate Trends Using Sentiment Analysis of Twitter Data

  • Komariah, Kokoy Siti;Machbub, Carmadi;Prihatmanto, Ary S.;Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1107-1115
    • /
    • 2016
  • Efficient Market Hypothesis (EMH), states that at any point in time in a liquid market security prices fully reflect all available information. This paper presents a study of proving the hypothesis through daily Twitter sentiments using the hybrid approach of the lexicon-based approach and the naïve Bayes classifier. In this research we analyze the currency exchange rate movement of Indonesia Rupiah vs US dollar as a way of testing the Efficient Market Hypothesis. In order to find a correlation between the prediction sentiments from Twitter data and the actual currency exchange rate trends we collect Twitter data every day and compute the overall sentiment to label them as positive or negative. Experimental results have shown 69% correct prediction of sentiment analysis and 65.7% correlation with positive sentiments. This implies that EMH is semi-strong Efficient Market Hypothesis, and that public information provide by Twitter sentiment correlate with changes in the exchange market trends.

Microblog User Geolocation by Extracting Local Words Based on Word Clustering and Wrapper Feature Selection

  • Tian, Hechan;Liu, Fenlin;Luo, Xiangyang;Zhang, Fan;Qiao, Yaqiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3972-3988
    • /
    • 2020
  • Existing methods always rely on statistical features to extract local words for microblog user geolocation. There are many non-local words in extracted words, which makes geolocation accuracy lower. Considering the statistical and semantic features of local words, this paper proposes a microblog user geolocation method by extracting local words based on word clustering and wrapper feature selection. First, ordinary words without positional indications are initially filtered based on statistical features. Second, a word clustering algorithm based on word vectors is proposed. The remaining semantically similar words are clustered together based on the distance of word vectors with semantic meanings. Next, a wrapper feature selection algorithm based on sequential backward subset search is proposed. The cluster subset with the best geolocation effect is selected. Words in selected cluster subset are extracted as local words. Finally, the Naive Bayes classifier is trained based on local words to geolocate the microblog user. The proposed method is validated based on two different types of microblog data - Twitter and Weibo. The results show that the proposed method outperforms existing two typical methods based on statistical features in terms of accuracy, precision, recall, and F1-score.

Defect Detection in Laser Welding Using Multidimensional Discretization and Event-Codification (Multidimensional Discretization과 Event-Codification 기법을 이용한 레이저 용접 불량 검출)

  • Baek, Su Jeong;Oh, Rocku;Kim, Duck Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.989-995
    • /
    • 2015
  • In the literature, various stochastic anomaly detection methods, such as limit checking and PCA-based approaches, have been applied to weld defect detection. However, it is still a challenge to identify meaningful defect patterns from very limited sensor signals of laser welding, characterized by intermittent, discontinuous, very short, and non-stationary random signals. In order to effectively analyze the physical characteristics of laser weld signals: plasma intensity, weld pool temperature, and back reflection, we first transform the raw data of laser weld signals into the form of event logs. This is done by multidimensional discretization and event-codification, after which the event logs are decoded to extract weld defect patterns by $Na{\ddot{i}}ve$ Bayes classifier. The performance of the proposed method is examined in comparison with the commercial solution of PRECITEC's LWM$^{TM}$ and the most recent PCA-based detection method. The results show higher performance of the proposed method in terms of sensitivity (1.00) and specificity (0.98).