• Title/Summary/Keyword: Bax-Bak

Search Result 42, Processing Time 0.021 seconds

Gene Expression Profiling of Doxifluridine Treated Liver, Small and Large Intestine in Cynomolgus (Macaca fascicularis) Monkeys

  • Jeong, Sun-Young;Park, Han-Jin;Oh, Jung-Hwa;Kim, Choong-Yong;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.137-144
    • /
    • 2007
  • The mechanism of cytotoxicity of doxifluridine, a prodrug fluorouracil (5-FU), has been ascribed to the misincorporation of fluoropyrimidine into RNA and DNA and to the inhibition of the nucleotide synthetic enzyme thymidylate synthase. Increased understanding of the mechanism of 5-FU has led to the development of strategies that increases its anticancer activity or predicts its sensitivity to patients. Using GeneChip?? Rhesus Macaque Genome arrays, we analyzed gene expression profiles of doxifluridine after two weeks repeated administration in cynomolgus monkey. Kegg pathway analysis suggested that cytoskeletal rearrangement and cell adhesion remodeling were commonly occurred in colon, jejunum, and liver. However, expression of genes encoding extracellular matrix was distinguished colon from others. In colon, COL6A2, COL18A1, ELN, and LAMA5 were over-expressed. In contrast, genes included in same category were down-regulated in jejunum and liver. Interestingly, MMP7 and TIMP1, the key enzymes responsible for ECM regulation, were overexpressed in colon. Several studies were reported that both gene reduced cell sensitivity to chemotherapy-induced apoptosis. Therefore, we suggest they have potential as target for modulation of 5-FU action. In addition, the expression of genes which have been previously known to involve in 5-FU pathway, were examined in three organs. Particularly, there were more remarkable changes in colon than in others. In colon, ECGF1, DYPD, TYMS, DHFR, FPGS, DUT, BCL2, BAX, and BAK1 except CAD were expressed in the direction that was good response to doxifluridine. These results may provide that colon is a prominent target of doxifluridine and transcriptional profiling is useful to find new targets affecting the response to the drug.

Hyperglycemia Influences Apoptosis and Autophagy in Porcine Parthenotes Developing In Vitro

  • Xu, Yong-Nan;Li, Ying-Hua;Lee, Sung Hyun;Kwon, Jung-Woo;Lee, Seul Ki;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • v.37 no.2
    • /
    • pp.65-73
    • /
    • 2013
  • The objective of this study was to examine the effects of high concentrations of glucose on porcine parthenotes developing in vitro. Addition of 55 mM glucose to the culture medium of embryos at the four-cell-stage significantly inhibited blastocyst formation, resulting in fewer cells in blastocyst-stage embryos and increased levels of apoptosis and autophagy compared to control. Quantitative reverse transcriptase (RT) PCR analysis revealed that the expression of pro-apoptotic genes (Caspase 3, Bax and Bak) and autophagy genes (Atg6 and Atg8/Lc3) were increased significantly by the addition of 55 mM glucose to the culture medium compared to control. MitoTracker Green fluorescence revealed a decrease in the overall mitochondrial mass compared to control. However, the addition of 55 mM glucose had no effect on mRNA expression of the nuclear DNA-encoded mitochondrial-related genes, cytochrome oxidase (Cox) 5a, Cox5b and Cox6b1. These results suggest that hyperglycemia reduced the mitochondrial content of porcine embryos developing in vitro and that this may hinder embryonic development to the blastocyst stage and embryo quality by increasing apoptosis and autophagy in these embryos.

JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells

  • Choi, Dae Woo;Kim, Do Kyung;Kanai, Yoshikatsu;Wempe, Michael F.;Endou, Hitoshi;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.599-607
    • /
    • 2017
  • Most normal cells express L-type amino acid transporter 2 (LAT2). However, L-type amino acid transporter 1 (LAT1) is highly expressed in many tumor cells and presumed to support their increased growth and proliferation. This study examined the effects of JPH203, a selective LAT1 inhibitor, on cell growth and its mechanism for cell death in Saos2 human osteosarcoma cells. FOB human osteoblastic cells and Saos2 cells expressed LAT1 and LAT2 together with their associating protein 4F2 heavy chain, but the expression of LAT2 in the Saos2 cells was especially weak. JPH203 and BCH, a non-selective L-type amino acid transporter inhibitor, potently inhibited L-leucine uptake in Saos2 cells. As expected, the intrinsic ability of JPH203 to inhibit L-leucine uptake was far more efficient than that of BCH in Saos2 cells. Likewise, JPH203 and BCH inhibited Saos2 cell growth with JPH203 being superior to BCH in this regard. Furthermore, JPH203 increased apoptosis rates and formed DNA ladder in Saos2 cells. Moreover, JPH203 activated the mitochondria-dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bad, Bax, and Bak, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. These results suggest that the inhibition of LAT1 activity via JPH203, which may act as a potential novel anti-cancer agent, leads to apoptosis mediated by the mitochondria-dependent intrinsic apoptotic signaling pathway by inducing the intracellular depletion of neutral amino acids essential for cell growth in Saos2 human osteosarcoma cells.

Effects of LED irradiation on the expression of apoptosis-related molecules in human SH-SY5Y neuroblastoma cells

  • Cho, Kyu-Seung;Ryu, Sun-Youl;Choi, Hong-Ran
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • To verify the inhibitory or protective effects of light-emitting diode(LED) irradiation on apoptotic cell death induced by $CoCl_2$, human SH-SY5Y cells were treated with $CoCl_2$ and LED were used to irradiate the cells. In the cell viability assay, cells were died slowly from $50{\mu}M$ to $250{\mu}M$ and about 50% of cells died after 12 hours at $400{\mu}M$ of $CoCl_2$. The Diff-Quik staining revealed that cells showed condensation of DNA and blebbing of the cell membrane. The DNA fragmentation assay revealed the DNA fragmentation, which is another apoptosis marker, occurred in cells treated with $400{\mu}M$ $CoCl_2$ for 16 hours. In the western blot for HIF-$1{\alpha}$, HIF-$1{\alpha}$ was expressed after 3 hours from induction and peaked maximally at 16 hours. In the cell viability assay of the effects of LED irradiation (at 590 nm for 1 hour 20 minutes), the cells showed more proliferation (about 20%) than the control group. The RPA assay of various apoptosis-related molecules showed that pro-apoptosis molecules such as Bax, Bak, and Bid were upregulated in the $CoCl_2$ treatment group. This means that the apoptotic cell population was increased. However there was some significant changes in LED irradiated cells. In the $CoCl_2$-treated LED irradiation group, those molecules were down-regulated more than in the only $CoCl_2$-treated group. These results have shown that $CoCl_2$ may induce apoptotic cell death in human SH-SY5Y neuroblastoma cells. And LED irradiation has a positive effect on apoptotic cells by down-regulation of pro-apoptotic molecules.

Effects of Continentalic from Aralia Continentalis on Growth Inhibition and Apoptosis Induction in Human Leukemia HL-60 Cells (독활 유래 Continentalic Acid가 인간 백혈병 HL-60 세포의 성장억제와 아포토시스 유도에 미치는 영향)

  • Kim, Sun-Young;Jeong, Seung-Il;Kim, Sung-Zoo;Shim, Jae-Suk;Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1314-1319
    • /
    • 2009
  • In previous study, we have shown that continentalic acid (CA) isolated from Aralia continentalis induced the growth inhibition and apoptosis in HepG2 cells. In this study, we examine the effects of CA from A. continentalis on growth inhibition and apoptosis induction in human leukemia HL-60 and mouse fibroblast NIH 3T3 cell lines. The results demonstrated that CA decreased cell growth of leukemia HL-60 cells but not human HaCaT keratinocytes, assessed with the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and LDH (lactate dehydrogenase) assay. Flow cytometric analysis of mouse fibroblast cell lines exposed to CA showed that apoptotic cells increased in a time- and dose-dependent manner. Treatment with CA decreased the number of normal cells and increased the number of early apoptotic and late apoptotic cells in a dose-dependent manner. The induction of apoptosis in mouse cell lines by CA was mediated through the activation of caspase-3, Bak, and Bax and the down-regulation of Bcl-2. Our results suggest that CA efficiently induces apoptosis in human leukemia cells.

A5E promotes Cell growth Arrest and Apoptosis in Non Small Cell Lung Cancer

  • Bak, Ye Sol;Ham, Sun Young;O, Baatartsogt;Jung, Seung Hyun;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yoon, Do-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • A5E is complex of several medicinal herb ethanol extracts. The aim of this study is investigating the anticancer effect for non-small cell lung cancer. The antitumor effects of A5E on NCI-H460 were examined by regulation of cell proliferation, apoptosis, cell cycle arrest, mitochondrial membrane potential (${\Delta}{\Psi}_m$), and apoptosis-related protein. Cell proliferation was measured by MTS assay. Apoptosis induced by A5E was confirmed by Annexin V-fluorescein isothiocyanate (FITC)/Propidium Iodide (PI) staining, and cell cycle arrest was measured by PI staining. NF-${\kappa}B$ translocation was detected by immunofluorescence and MMP (${\Delta}{\Psi}_m$) was measured by JC-1 staining. The expression of extrinsic pathway molecules such as FasL and FADD were elevated, and procaspase-8 was processed by A5E. In addition, intrinsic pathway related molecules were altered. The Bcl-2 and Bcl-xl levels decreased, Bax increased, and cytochrome C was released. In addition, the mitochondrial membrane potential collapsed, and caspase-3 and poly-(ADP-ribose) polymerase were processed by A5E. Moreover, A5E affected the cellular survival pathway involving phosphatidylinositol 3-kinase (PI3K)/Akt and NF-${\kappa}B$. PI3K and Akt were downregulated, also NF-${\kappa}B$ expression was decreased, and nuclear translocalization was inhibited by A5E. These results suggested that A5E delays proliferation, inhibit cell cycle progression and induce apoptosis in human lung cancer cell. We conclude that A5E is a potential anticancer agent for human lung carcinoma.

The Effect of Aucklandiae Radix.Moschus(木香.麝香)'s for Delayed Neuronal Death in Hypoxia (목향(木香) 및 사향(麝香)이 저산소증 유발 배양 대뇌신경세포에 미치는 영향)

  • Jeong Sung-Hyun;Shin Gil-Cho;Lee Won-Chu;Moon Il-Su;Ryu Do-Kyun
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.348-357
    • /
    • 2003
  • Objectives : The purpose of this investigation is to evaluate the effects of Aucklandiae Radix Moschus(木香 麝香)and to study the mechanism for neuronal death protection in hypoxia with Embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods : E20 cortical cells used in this investigation were dissociated in Neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Aucklandiae Radix Moschus(木香 麝香) was added to the culture media for 72 hrs. On 17 DIV, cells were given a hypoxic shock and further incubated in normoxia for another three days. On 20 DIV, Moschus(麝香)'s effects for neuronal death protection were evaluated by LDH assay and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family. Results : This study indicate that Aucklandiae Radix(木香)'s effects for neuronal death protection in normoxia and Scutellariae Radix(麝香)'s effects for neuronal death protection in hypoxia were confirmed by LDH assay in culture method of Embryonic day 20(E20) cortical neuroblast. Moschus(麝香)'s mechanism for neuronal death protection in hypoxia is to increase the anti-apoptosis protein Bcl-2. Conclusions : It may be reasonable to propose that Moschus(麝香) protects delayed neuronal death in hypoxia by increasing Bcl-2, thereby reducing mitochondrial permeability transition(PT) pores, the cytochrome c channels.

  • PDF

Cis-3-O-p-hydroxycinnamoyl Ursolic Acid Induced ROS-Dependent p53-Mediated Mitochondrial Apoptosis in Oral Cancer Cells

  • Wang, Ching-Ying;Lin, Chen-Sheng;Hua, Chun-Hung;Jou, Yu-Jen;Liao, Chi-Ren;Chang, Yuan-Shiun;Wan, Lei;Huang, Su-Hua;Hour, Mann-Jen;Lin, Cheng-Wen
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.54-62
    • /
    • 2019
  • Cis-3-O-p-hydroxycinnamoyl ursolic acid (HCUA), a triterpenoid compound, was purified from Elaeagnus oldhamii Maxim. This traditional medicinal plant has been used for treating rheumatoid arthritis and lung disorders as well as for its anti-inflammation and anticancer activities. This study aimed to investigate the anti-proliferative and apoptotic-inducing activities of HCUA in oral cancer cells. HCUA exhibited anti-proliferative activity in oral cancer cell lines (Ca9-22 and SAS cells), but not in normal oral fibroblasts. The inhibitory concentration of HCUA that resulted in 50% viability was $24.0{\mu}M$ and $17.8{\mu}M$ for Ca9-22 and SAS cells, respectively. Moreover, HCUA increased the number of cells in the sub-G1 arrest phase and apoptosis in a concentration-dependent manner in both oral cancer cell lines, but not in normal oral fibroblasts. Importantly, HCUA induced p53-mediated transcriptional regulation of pro-apoptotic proteins (Bax, Bak, Bim, Noxa, and PUMA), which are associated with mitochondrial apoptosis in oral cancer cells via the loss of mitochondrial membrane potential. HCUA triggered the production of intracellular reactive oxygen species (ROS) that was ascertained to be involved in HCUA-induced apoptosis by the ROS inhibitors YCG063 and N-acetyl-L-cysteine. As a result, HCUA had potential antitumor activity to oral cancer cells through eliciting ROS-dependent and p53-mediated mitochondrial apoptosis. Overall, HCUA could be applicable for the development of anticancer agents against human oral cancer.

Alteration of Apoptosis during Differentiation in Human Dental Pulp-Derived Mesenchymal Stem Cell

  • Lee, Hyeon-Jeong;Park, Byung-Joon;Jeon, Ryoung-Hoon;Jang, Si-Jung;Son, Young-Bum;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.2-9
    • /
    • 2019
  • Because mesenchymal stem cells (MSCs) maintain distinct capacities with respect to self-renewal, differentiation ability and immunomodulatory function, they have been highly considered as the therapeutic agents for cell-based clinical application. Of particular, differentiation condition alters characteristics of MSCs, including cellular morphology, expression of gene/protein and cell surface molecule, immunological property and apoptosis. However, the previous results for differentiation-related apoptosis in MSCs have still remained controversial due to varied outcomes. Therefore, the present study aimed to disclose periodical alterations of pro- and anti-apoptosis in MSCs under differentiation inductions. The human dental pulp-derived MSCs (DP-MSCs) were differentiated into adipocytes and osteoblasts during early (1 week), middle (2 weeks) and late (3 weeks) stages, and were investigated on their apoptosis-related changes by Annexin V assay, qRT-PCR and western blotting. The ratio of apoptotic cell population was significantly (p < 0.05) elevated during the early to middle stages of differentiations but recovered up to the similar level of undifferentiated state at the late stage of differentiation. In the expression of mRNA and protein, whereas expressions of pro-apoptosis-related makers (BAX and BAK) were not altered in any kind and duration of differentiation inductions, anti-apoptosis marker (BCL2) was significantly (p < 0.05) elevated even at the early stage of differentiations. The recovery of apoptotic cell population at the late stage of differentiation is expected to be associated with the response by elevation of anti-apoptotic molecules. The present study may contribute on understanding for cellular mechanism in differentiation of MSCs and provide background data in clinical application of MSCs in the animal biotechnology to develop effective and safe therapeutic strategy.

Plumbagin from Plumbago Zeylanica L Induces Apoptosis in Human Non-small Cell Lung Cancer Cell Lines through NF-κB Inactivation

  • Xu, Tong-Peng;Shen, Hua;Liu, Ling-Xiang;Shu, Yong-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2325-2331
    • /
    • 2013
  • Objective: To detect effects of plumbagin on proliferation and apoptosis in non-small cell lung cancer cell lines, and investigate the underlying mechanisms. Materials and Methods: Human non-small cell lung cancer cell lines A549, H292 and H460 were treated with various concentrations of plumbagin. Cell proliferation rates was determined using both cell counting kit-8 (CCK-8) and clonogenic assays. Apoptosis was detected by annexin V/propidium iodide double-labeled flow cytometry and TUNEL assay. The levels of reactive oxygen species (ROS) were detected by flow cytometry. Activity of NF-${\kappa}B$ was examined by electrophoretic mobility shift assay (EMSA) and luciferase reporter assay. Western blotting was used to assess the expression of both NF-${\kappa}B$ regulated apoptotic-related gene and activation of p65 and $I{\kappa}B{\kappa}$. Results: Plumbagin dose-dependently inhibited proliferation of the lung cancer cells. The IC50 values of plumbagin in A549, H292, and H460 cells were 10.3 ${\mu}mol/L$, 7.3 ${\mu}mol/L$, and 6.1 ${\mu}mol/L$ for 12 hours, respectively. The compound concentration-dependently induced apoptosis of the three cell lines. Treatment with plumbagin increased the intracellular level of ROS, and inhibited the activation of NK-${\kappa}B$. In addition to inhibition of NF-${\kappa}B$/p65 nuclear translocation, the compound also suppressed the degradation of $I{\kappa}B{\kappa}$. ROS scavenger NAC highly reversed the effect of plumbagin on apoptosis and inactivation of NK-${\kappa}B$ in H460 cell line. Treatment with plumbagin also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl-2, upregulated the expression of Bax, Bak, and CytC. Conclusions: Plumbagin inhibits cell growth and induces apoptosis in human lung cancer cells through an NF-${\kappa}B$-regulated mitochondrial-mediated pathway, involving activation of ROS.