• Title/Summary/Keyword: Bax inhibitor

Search Result 172, Processing Time 0.025 seconds

The proteasome inhibition enhances apoptosis by P53 expression and the dissipation of mitochondrial transmembrane potential in TRAIL-resistant lung cancer cells (Proteasome 억제에 의한 P53의 발현과 미토콘드리아 막 전압의 소실로 TRAIL에 저항하는 폐암세포의 사멸 강화)

  • Seol, Jae-Won;Park, Sang-Youel
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The ubiquitin-proteasome mediated protein degradation pathway plays an important role in regulating both cell proliferation and cell death. Proteasome inhibitors are well known to induce apoptosis in various human cancer cell lines. We investigated the effect of combined treatment with proteasome inhibitor and TRAIL, and a possible mechanism of the enhancing apoptosis by the both treatment, on TRAIL-resistant non-small cell lung cancer. A549 cells were exposed to the N-Acetyl-Leu-Leu-Norleu-al (ALLN) as a proteasome inhibitor and then treated with recombinant TRAIL protein. In A549 cells under proteasome inhibition conditions by pretreatment with ALLN, TRAIL treatment significantly decreased cell viability compared to that ALLN and TRAIL alone treatment. Also, the both treatment induced cell damage through DNA fragmentation and p53 expression. In addition, the combined treatment of both markedly increased caspase-8 activation, especially the exposure for 2 h, and Bax expression and induced the dissipation of mitochondrial transmembrane potential in A549 cells. Taken together, these findings showed that proteasome inhibition by ALLN enhanced TRAIL-induced apoptosis via DNA degradation by activated P53 and mitochondrial transmembrane potential loss by caspase-8 activation and bax expression. Therefore, our results suggest that proteasome inhibitor may be used a very effectively chemotherapeutic agent for the tumor treatment, especially TRAIL-resistant tumor cell.

Circ_UBE2D2 Attenuates the Progression of Septic Acute Kidney Injury in Rats by Targeting miR-370-3p/NR4A3 Axis

  • Huang, Yanghui;Zheng, Guangyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.740-748
    • /
    • 2022
  • As circ_UBE2D2 has been confirmed to have targeted binding sites with multiple miRNAs involved in septic acute kidney injury (SAKI), efforts in this study are directed to unveiling the specific role and relevant mechanism of circ_UBE2D2 in SAKI. HK-2 cells were treated with lipopolysaccharide (LPS) to construct SAKI model in vitro. After sh-circ_UBE2D2 was transfected into cells, the transfection efficiency was detected by qRT-PCR, cell viability and apoptosis were determined by MTT assay and flow cytometry, and expressions of Bcl-2, Bax and Cleaved-caspase 3 were quantified by western blot. Target genes associated with circ_UBE2D2 were predicted using bioinformatics analysis. After the establishment of SAKI rat model, HE staining and TUNEL staining were exploited to observe the effect of circ_UBE2D2 on tissue damage and cell apoptosis. The expression of circ_UBE2D2 was overtly elevated in LPS-induced HK-2 cells. Sh-circ_UBE2D2 can offset the inhibition of cell viability and the promotion of cell apoptosis induced by LPS. Circ_UBE2D2 and miR-370-3p as well as miR-370-3p and NR4A3 have targeted binding sites. MiR-370-3p inhibitor reversed the promoting effect of circ_UB2D2 silencing on viability of LPS-treated cells, but shNR4A3 neutralized the above inhibitory effect of miR-370-3p inhibitor. MiR-370-3p inhibitor weakened the down-regulation of NR4A3, Bax and Cleaved caspase-3 and the up-regulation of Bcl-2 induced by circ_UB2D2 silencing, but these trends were reversed by shNR4A3. In addition, sh-circ_UBE2D2 could alleviate the damage of rat kidney tissue. Circ_UBE2D2 mitigates the progression of SAKI in rats by targeting miR-370-3p/NR4A3 axis.

Regulatory Role of Autophagy in Globular Adiponectin-Induced Apoptosis in Cancer Cells

  • Nepal, Saroj;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.384-389
    • /
    • 2014
  • Adiponectin, an adipokine predominantly secreted from adipose tissue, exhibits diverse biological responses, including metabolism of glucose and lipid, and apoptosis in cancer cells. Recently, adiponectin has been shown to modulate autophagy as well. While emerging evidence has demonstrated that autophagy plays a role in the modulation of proliferation and apoptosis of cancer cells, the role of autophagy in apoptosis of cancer cell caused by adiponectin has not been explored. In the present study, we demonstrated that globular adiponectin (gAcrp) induces both apoptosis and autophagy in human hepatoma cell line (HepG2 cells) and breast cancer cells (MCF-7), as evidenced by increase in caspase-3 activity, Bax, microtubule-associated protein light chain 3-II (LC3 II) protein levels, and autophagosome formation. Interestingly, gene silencing of LC3B, an autophagy marker, significantly enhanced gAcrp-induced apoptosis in both HepG2 and MCF-7 cell lines, whereas induction of autophagy by rapamycin, an mTOR inhibitor, significantly prevented gAcrp-induced apoptosis in hepatoma cells HepG2. Furthermore, modulation of autophagy produced similar effects on gAcrp-induced Bax expression in HepG2 cells. These results implicate that induction of autophagy plays a regulatory role in adiponectin-induced apoptosis of cancer cells, and thus inhibition of autophagy would be a novel promising target to enhance the efficiency of cancer cell apoptosis by adiponectin.

In vitro Investigation of Cytotoxic and Apoptotic Effects of Cynara L. Species in Colorectal Cancer Cells

  • Simsek, Ela Nur;Uysal, Tuna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6791-6795
    • /
    • 2013
  • Apoptotic and cytotoxic activity of plant extracts obtaining from naturally growing Cynara syriaca in Turkey and cultivated C cardunculus against DLD1 colorectal cancer cells was determined. Extracts from wild and cultivated Cynara species were obtained from their vegetative parts and receptacles using hexane and applied with five different dose (0.1-1 mg/ml) as well as apigenin for MTT tests for three time periods (24, 48 and 72 hours). After cells were treated with $IC_{50}$ doses for each extract total DNA and RNA were isolated for determination of the cause of cell death. From isolated RNAs, cDNA were synthesized and amplification of p21, BCL-2 and BAX gene regions was carried out. Consequently, we found that pro-apoptotic (BAX) gene expression and a cell cycle inhibitor (p21) were induced in the presence of our artichoke extracts. In contrast, anti-apoptotic BCL-2 gene expression was reduced compared to the control group. In addition DNA fragmentation results demonstrated DLD1 cell death via apoptosis.

Apoptotic Cell Death by Melittin through Induction of Bax and Activation of Caspase Proteases in Human Lung Carcinoma Cells (Bax의 발현증가 및 Caspase의 활성을 통한 봉독약침액 Melittin의 인체폐암세포 Apoptosis 유발에 관한 연구)

  • Ahn, Chang-beohm;Im, Chun-woo;Kim, Cheol-hong;Youn, Hyoun-min;Jang, Kyung-jeon;Song, Choon-ho;Choi, Yung-hyun
    • Journal of Acupuncture Research
    • /
    • v.21 no.2
    • /
    • pp.41-55
    • /
    • 2004
  • Objective : To investigate the possible molecular mechanism (s) of melittin as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Methods : Growth inhibitory study, flow cytometry analysis, SDS-polyacrylamide gel electrophoresis and Western blot analysis, RT-PCR and in vitro caspases activity assay were performed. Results : Melittin treatment declined the cell viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Melittin treatment down-regulated the levels of Bcl-XS/L mRNA and protein expression of A549 cells, an anti-apoptotic gene, however, the those of Bax, a pro-apoptotic gene, were up-regulated. Melittin induced the proteolytic cleavage and activation of caspase-3 and caspase-9 protease in a dose-dependent manner without alteration of inhibitor of apoptosis proteins family and Akt expression. Western blot analysis and RT-PCR data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 were also remained unchanged. Conclusions : Taken together, these findings suggest that melittin-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and melittin may have therapeutic potential in human lung cancer.

  • PDF

Neonatal Rat Necrotizing Enterocolitis Model Adopting Oral Endotoxin and Hypoxia Exhibits Increased Apoptosis through Caspase-3 Activation (경구 내독소와 저산소로 유발된 신생쥐의 괴사성 장염모델에서 caspase-3 활성화를 통한 세포자멸사의 증가)

  • Lee, Yun-Kyoung;Kim, Ee-Kyung;Kim, Ji-Eun;Kim, Yoon-Joo;Son, Se-Hyung;Kim, Han-Suk;Kim, Beyong-Il;Choi, Jung-Hwan
    • Neonatal Medicine
    • /
    • v.17 no.1
    • /
    • pp.44-52
    • /
    • 2010
  • Purpose : The aim of this study was to develop a model for necrotizing enterocolitis (NEC) in the neonatal rat using endotoxin and hypoxia, a plausible insult in a neonatal intensive care and to investigate the role of apoptosis as the underlying mechanism. Methods : Newborn rats were given oral endotoxin and intermittent 8% hypoxia$\pm$caspase inhibitor. The intestinal histology was evaluated using hematoxylin-eosin staining. Apoptosis was analyzed with TUNEL staining and by measuring the caspase 3 activity in the intestinal lysates. IEC-6 cells were assessed for apoptosis and the expression of Bax, Bcl-2, Fas and FasL was measured after treatment with endotoxin and hypoxia. Results : Oral endotoxin (5 mg/kg) and exposure to 8% hypoxia of 60-min duration twice induced human NEC-like lesions in the rat intestine. Intestinal tissue revealed increased apoptosis and caspase-3 activity. After caspase inhibitor treatment, the grades of both apoptosis and NEC were significantly reduced. IEC-6 cells exhibited increased apoptosis and caspase 3 activity after endotoxin and hypoxia treatment and significantly increased Bax/Bcl- 2 ratio compared to control cells. Conclusion : This neonatal rat model of NEC which was induced by oral endotoxin and intermittent hypoxia showed increased apoptosis of intestinal epithelial cells that was mediated by caspase 3 activation. Our model has a advantage in the study of NEC because the use of much more clinically plausible insults may provide a suitable model for the investigation of its pathophysiology and therapeutic trials.

Protection of Primary Cultured Mouse Hepatocytes from Chemical Hypoxia-induced Injury by Hydrogen Sulfide (화학적 허혈에 의해 손상된 마우스 간세포에 대한 hydrogen sulfide의 간세포 보호 효과)

  • Lee, Min Young
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1342-1350
    • /
    • 2013
  • We examined the effect of hydrogen sulfide ($H_2S$) in chemical hypoxia-induced injury in mouse hepatocytes. Cell viability was significantly decreased by cobalt chloride ($CoCl_2$), a well-known hypoxia mimetic agent in a time- and dose- dependent manner. Sodium hydrosulfide (NaHS, a donor of $H_2S$) pretreatment before exposure to $CoCl_2$ significantly attenuated the $CoCl_2$-induced decrease of cell viability. $CoCl_2$ treatment resulted in an increase of intracellular ROS generation, which is inhibited by NaHS or N-acetyl-cysteine (NAC, a ROS scavenger), and p38 MAPK phosphorylation, which is also blocked by NaHS or NAC. The $CoCl_2$-induced increase of the Bax/Bcl-2 ratio was attenuated by NaHS, NAC, and SB 203580 (p38 MAPK inhibitor). The $CoCl_2$-induced decrease of cell viability was also attenuated by NaHS, NAC, and SB 203580 pretreatment. Additionally, NaHS inhibited the $CoCl_2$-induced COX-2. Similar to the effect of NaHS, NAC blocked $CoCl_2$-induced COX-2 expression. Furthermore, NS-398 (a selective COX-2 inhibitor) attenuated not only the $CoCl_2$-induced increase of the Bax/Bcl-2 ratio, it also decreased cell viability. Taken together, $H_2S$ protects primary cultured mouse hepatocytes against $CoCl_2$-induced cell injury through inhibition of the ROS-activated p38 MAPK cascade and the COX-2 pathway.

The Protective Effects of Pueraria Radix against Chronic Alcohol-induced Muscle Atrophy in Rats (알콜로 유도된 흰쥐의 근위축에서 갈근(葛根)의 보호 작용과 그 기전에 대한 고찰)

  • Kim, Bum Hoi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • Objectives Ethanol is a potent inhibitor of muscle protein synthesis. Muscle mass is regulated by the balance between rates of protein synthesis and protein breakdown. Both acute and chronic alcohol consumption inhibits synthesis to a greater extent than degradation. Protein synthesis is more intensely decreased in type II fibers than in type I fibers. Apoptosis has been shown to occur frequently in a variety of tissues in response to chronic alcohol feeding. Increased muscle fiber apoptosis has been shown in alcoholics with myopathy. Pueraria radix has been used for many disorders such as fevers, gastrointestinal disorders, muscle aches, allergies, respiratory problems, skin problems, high blood pressure, migraine headaches, lowering cholesterol and treating chronic alcoholism. We therefore tested the hypothesis that oral treatment with Pueraria radix could reduce the ethanol-induced muscle atrophy. Methods Young male Sprague-Dawley rats were orally given 25% ethanol (5 ml/kg, body weight) daily with Ethanol for 4 weeks. Normal group was similarly administrated with saline. The Rats of Pueraria radix treated group (EtOH+PR) were orally administrated Pueraria radix water extract, and rats of EtOH group were given with the vehicle only. After 4 week, the morphology of gastrocnemius and plantaris muscles were assessed by hematoxylin and eosin staining. The immunoreactivities of pre-apoptotic BAX and anti-apoptotic Bcl-2 proteins were also measured. Results The muscles from rats of EtOH group represented a significant reduction in average cross section area compared to Normal group. EtOH+PR group had increased fiber compared to the EtOH group. Moreover, to investigate the ethanol-induced muscular apoptosis, the immunohistochemical analysis of Bax and Bcl-2 was carried out. The treatment with Pueraria radix (EtOH+PR) significantly decreased BAX expression and increased Bcl-2 expression 4 weeks after ethanol administration when compared with Normal group. Conclusions These results suggest that Pueraria radix water extract has protective effects on chronic alcohol induced myopathy.

Melatonin Induces Apoptotic Cell Death via p53 in LNCaP Cells

  • Kim, Chi-Hyun;Yoo, Yeong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.365-369
    • /
    • 2010
  • In this study, we examined whether melatonin promotes apoptotic cell death via p53 in prostate LNCaP cells. Melatonin treatment significantly curtailed the growth of LNCaP cells in a dose- and time-dependent manner. Melatonin treatment (0 to 3 mM) induced the fragmentation of poly(ADP-ribose) polymerase (PARP) and activation of caspase-3, caspase-8, and caspase-9. Moreover, melatonin markedly activated Bax expression and decreased Bcl-2 expression in dose increments. To investigate p53 and p21 expression, LNCaP cells were treated with 0 to 3 mM melatonin. Melatonin increased the expressions of p53, p21, and p27. Treatment with mitogen-activated protein kinase (MAPK) inhibitors, PD98059 (ERK inhibitor), SP600125 (JNK inhibitor) and SB202190 (p38 inhibitor), confirmed that the melatonin-induced apoptosis was p21-dependent, but ERK-independent. With the co-treatment of PD98059 and melatonin, the expression of p-p53, p21, and MDM2 did not decrease. These effects were opposite to the expression of p-p53, p21, and MDM2 observed with SP600125 and SB202190 treatments. Together, these results suggest that p53-dependent induction of JNK/p38 MAPK directly participates in apoptosis induced by melatonin.