• Title/Summary/Keyword: Battery waste

Search Result 115, Processing Time 0.026 seconds

An Optimized Sleep Mode for Saving Battery Consumption of a Mobile Node in IEEE 802.16e Networks (IEEE 802.16e 시스템에서 이동 단말의 전력 소모 최소화를 위한 취적 휴면 기법)

  • Park, Jae-Sung;Kim, Beom-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.221-229
    • /
    • 2007
  • In this paper, we propose and analyze the optimized sleep mode for a mobile node (MN) in IEEE 802.16e wireless metropolitan area networks. Because a MN in a sleep mode specified in 802.16e specification should maintain state information with the base station currently attached, it must renew sleep state with a new base station after handover which leads to unnecessary waste of battery power. Noting that the mobility pattern of a MN is independent of call arrival patterns, we propose an optimized sleep mode to eliminate unnecessary standby period of a MN in sleep state after handover. We also propose an analytical model for the proposed scheme in terms of power consumption and the initial call response time. Simulation studies that compare the performance between the sleep mode and the optimized sleep mode show that our scheme marginally increases initial call response delay with the huge reduction in power consumption.

An Energy Efficient Routing Protocol using MAC-layer resources in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 MAC 계층 자원을 이용한 에너지 효율 라우팅 프로토콜)

  • Yoo, Dae-Hun;Choi, Woong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.219-228
    • /
    • 2007
  • End-to-end path setup and maintenance are very important for mobile ad-hoc wireless communications, because of the mobility and the limited battery capacity of the nodes in the networks. the AODV routing protocol is the one of mary proposed protocols. However, there are route failure problem with the Proposed protocols between intermediate nodes due to such mobility and exhausted battery characteristics, and this is because only the shortest hop count is considered for the route setup. If route failure happens. Problem such as the waste of bandwidth and the increment of the energy consumption occur because of the discarding data packets in the intermediate nodes and the path re-setup process required by the source node. In addition, it obviously causes the network lifetime to be shortened. This paper proposes a routing protocol based on the AODV routing protocol that it makes use of the remaining energy, signal strength and SNR of the MAC layer resources to setup a path.

  • PDF

An efficient session management scheme for low-latency communications in 5G systems

  • Kim, Jae-Hyun;Kim, Seog-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.83-92
    • /
    • 2020
  • In this paper, we propose an efficient session management scheme for low-latency communications in 5G systems. The main idea of the proposed scheme is to prevent unnecessary reattempt signalling overhead when the session establishment for low-latency communications fails. Also, this method avoids network resource waste and battery drain of mobile devices. If a UE(User Equipment) fails to establish an Always-on PDU session for low-latency communications with the 5G systems because of network failure or resource unavailability, the proposed method prevents the UE's re-establishment of the Always-on PDU session by the specific information in the NAS(Non-Stratum) message from the 5G systems. Through simulation, we show that the proposed efficient session management scheme (ESMS) minimizes unnecessary signalling overhead and improves battery efficiency of mobile devices compared to existing legacy mechanism in 5G systems.

A Study on the Cementation Reaction of Cadmium by Zinc Powders from Leaching Solution of Waste Nickel-Cadmium Batteries (폐니켈-카드뮴 전지 침출액으로부터 아연 분말을 이용한 카드뮴의 치환반응에 대한 연구)

  • Kim, Min-Jun;Park, Il-Jeong;Kim, Dae-Weon;Jung, Hang-Chul
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • Cementation is one of economical and efficient recycling method precipitating the metal ion in solution by adding another active metal. In this study for optimizing cadmium recovery efficiency, it was performed as a function of the effect of pH, temperature, particle size, and input amount of zinc in 0.1 M $CdSO_4$ solution and Ni-Cd battery leaching solutions, respectively. The particle size of zinc and temperature were key factors for Cd cementation and it was confirmed that the input amount of 2.6 of Zn/Cd ratio using granular-type zinc was optimal condition for selective Cd recovery efficiency at $25^{\circ}C$.

A study on the fabrication of high purity lithium carbonate by recrystallization of low grade lithium carbonate (저급 탄산리튬의 재결정화를 통한 고순도 탄산리튬 제조에 대한 연구)

  • Kim, Boram;Kim, Dae-Weon;Hwang, Sung-Ok;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2021
  • Lithium carbonate recovered from the waste solution generated during the lithium secondary battery manufacturing process contains heavy metals such as cobalt, nickel, and manganese. In this study, the recrystallization of lithium carbonate was performed to remove heavy metals contained in the powder and to increase the purity of lithium carbonate. First, the leaching efficiency of lithium carbonate according to pH in the aqueous hydrochloric acid solution was examined, and the effect on the recrystallization of lithium carbonate according to the equivalent and concentration of sodium carbonate was confirmed. As the equivalent and concentration of sodium carbonate increased, the recovery rate of lithium carbonate improved. And the SEM image showed that the crystal shape was changed depending on the reaction conditions with sodium carbonate. Finally, the high purity lithium carbonate of 99.9% or more was recovered by washing with water.

Evaluation of Lead Exposure Characteristics by Process Category and Activity (작업공정 및 활동에 따른 국내 작업장 납 노출특성 평가)

  • Dohee Lee;Naroo Lee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.1
    • /
    • pp.19-33
    • /
    • 2023
  • Objectives: The purpose of this study is to systematically identify situations where exposure levels are expected to be high by structuring domestic lead measurement data according to exposure processes and activities. Methods: Occupational exposure data on lead was collected from the results of the Evaluation of Reliability of Working Environment Measurement conducted by the government from 2019 to 2020. Lead exposure characteristics were analyzed by PROC (process category) and activity. The Risk Characterization Ratios (RCRs) of five PROCs according to ventilation type and lead content were evaluated using the MEASE (Metal's EASE) model. Results: The exposure data on lead (n=250) was classified into 12 PROCs and 12 activities, with an average concentration of 0.040 mg/m3 and about 14% exceeding the occupational exposure limit of 0.05 mg/m3. Processes with high exposure levels were PROC 7 (industrial spraying), 23 (open processing and transfer operations of molten metal), 24 (mechanical treatment), 25 (welding), and 26 (handling of powder containing lead). The results of evaluating RCR for the five PROCs were greater than 1 or close to 1 even if local exhaust ventilation was used. Conclusions: There is a possibility that the concentration of exposure is high in the casting and tapping of molten metal containing lead, mechanical treatment such as fracturing and abrasion, handling of powder, spraying, battery manufacturing, and waste battery recycling processes. It is necessary to implement chemical management policies for workplaces with such processes.

Preparation of Hybrid Carbon from Conducting Polymer-Coconut Shell Composites and Their Electrochemical Properties (코코넛 껍질-전도성 고분자 복합소재로부터 탄소 소재의 제조 및 전기화학적 특성 분석)

  • Jeongeun Park;Subin Shin;Yewon Yoon;Jiwon Park;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.37-41
    • /
    • 2024
  • The coconut shell, a by-product of popular tropical fruit, is a promising material due to its interesting properties. The preparation of the composite consisted of conducting polymer and coconut shell using a simple wet method, and subsequent carbonization produced a carbonized material under a controlled carbonization cycle. In addition, its electrochemical performance as an anode in lithium-ion batteries was also investigated. The appearance of the obtained materials was observed with a scanning electron microscope. The internal structure of the carbon derived from the coconut shell under a controlled heating profile was analyzed using a Raman spectroscope. A simple electrical measurement based on the ohmic relationship showed that the carbonized product has a significant electrical conductivity. The application of the carbonized product as anode in a lithium-ion battery was tested using half-cell charge/discharge experiments. This article provides important information for future research regarding the recycling of fruit shells and food waste.

Technical Trends of Rare Metal Recycling in the Next Generation Automobile (차세대 자동차용 희소금속 리싸이클링 기술동향)

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.3-16
    • /
    • 2014
  • Car exhaust $CO_2$ gas reduction and fuel efficiency of the car lighter for the current era is a big challenge. The developments of high-performance Nd magnets, Li-ion secondary battery and exhaust gas purification performance of PGM catalysts used in the lightweight EV and HEV are activated. Country in order to improve the car lighter and function that use the resources of rare metals are ubiquitous imported from China because of export supply control, as soaring prices have unstable supply and demand. Compared to the emissions from the next-generation automotive recycling, waste scarce resources need to be. This study investigated the recycling technology analysis and development of the information technology, or delivered to the researchers by giving national car industry aims to contribute to the development. Findings, pulmonary high-performance motor vehicle emissions in the exhaust gas purification PGM Catalysts, Li-ion battery and Nd magnets recycling technology, such as pre- and post-processing techniques to classify technology, pre-urban mining technology mechanical separation by screening techniques under development, the study and post-processing technology has, pyro and hydro metallurgical smelting technology is established. Waste Recycling in terms of economic efficiency of mechanical components for the intensive study of screening techniques is needed.

Recoverty of Lithium Carbonate and Nickel from Cathode Active Material LNO(Li2NiO2) of Precursor Process Byproducts (전구체 공정부산물 LNO(Li2NiO2)계 양극활물질로부터 탄산리튬 및 니켈 회수연구)

  • Pyo, Je-Jung;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, Li powder was recovered from the by-product of LNO ($Li_2NiO_2$) process, which is the positive electrode active material of waste lithium ion battery, through the $CO_2$ thermal reaction process. In the process of recovering Li powder, the $CO_2$ injection amount is 300 cc/min. The $Li_2NiO_2$ award was phase-separated into the $Li_2CO_3$ phase and the NiO phase by holding at $600^{\circ}C$ for 1 min. After this, the collected sample:distilled water = 1:50 weight ratio, and after leaching, the solution was subjected to vacuum filtration to recover $Li_2CO_3$ from the solution, and the NiO powder was recovered. In order to increase the purity of Ni, it was maintained in $H_2$ atmosphere for 3 hours to reduce NiO to Ni. Through the above-mentioned steps, the purity of Li was 2290 ppm and the recovery was 92.74% from the solution, and Ni was finally produced 90.1% purity, 92.6% recovery.

Study of Conversion of Waste LFP Battery into Soluble Lithium through Heat Treatment and Mechanochemical Treatment (열처리 및 기계화학적 처리를 통한 폐LFP 배터리로부터 가용성 리튬으로의 전환 연구)

  • Boram Kim;Hee-Seon Kim;Dae-Weon Kim
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.21-29
    • /
    • 2024
  • Globally, the demand for electric vehicles (EVs) is surging due to carbon-neutral strategies aimed at decarbonization. Consequently, the demand for lithium-ion batteries, which are essential components of EVs, is also rising, leading to an increase in the generation of spent batteries. This has prompted research into the recycling of spent batteries to recover valuable metals. In this study, we aimed to selectively leach and recover lithium from the cathode material of spent LFP batteries. To enhance the reaction surface area and reactivity, the binder in the cathode material powder was removed, and the material was subjected to heat treatment in both atmospheric and nitrogen environments across various temperature ranges. This was followed by a mechanochemical process for aqueous leaching. Initially, after heat treatment, the powder was converted into a soluble lithium compound using sodium persulfate (Na2S2O8) in a mechanochemical reaction. Subsequently, aqueous leaching was performed using distilled water. This study confirmed the changes in the characteristics of the cathode material powder due to heat treatment. The final heat treatment in a nitrogen atmosphere resulted in a lithium leaching efficiency of approximately 100% across all temperature ranges.