• Title/Summary/Keyword: Battery recycling

Search Result 161, Processing Time 0.028 seconds

Technology Developments for Recycling of Lithium Battery Wastes

  • Sohn, Jeong-Soo;Lee, Churl-Kyung
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.65-74
    • /
    • 2003
  • As new functional electronics are being developed fast, the commercialization rate of advanced battery as a power source proceeds rapidly. Lithium battery is satisfying the needs of high-energy source for its lightness and good electrochemical property. Especially lithium ion battery, adopted as a new power source for portable electronic equipments around the globe, has been mass-produced. Under the circumstance, the generation of lithium battery wastes is becoming a new environmental problem. In this paper, we are going to inspect technology developments for recycling of lithium battery wastes and scraps in domestic and foreign area, and to suggest how to treat domestic lithium battery wastes and scraps better.

Trend on the Recycling Technologies for Spent Batteries by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 폐전지 재활용(再活用) 기술(技術) 동향(動向))

  • Shin, Shun-Myung;Joo, Sung-Ho;Kim, Soo-Kyung;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.16-25
    • /
    • 2012
  • There are several kinds of batteries such as zinc-air battery, lithium battery, Manganese dry battery, silver oxide battery, sodium-sulphur battery, lead acid battery, metal hydride secondary battery, nickel-cadmium battery, lithium ion battery, alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents and published papers on the recycling technologies of the used battery were analyzed. The range of search was limited in the open patents of USA (US), European Union (EU), Japan (JP), Korea (KR) and SCI journal articles from 1972 to 2011. Patents and journal articles were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journal articles were analyzed by the years, countries, companies, and technologies.

Trend on the Recycling Technologies for the used Lithium Battery by the Patent Analysis (특허(特許)로 본 폐리튬전지 재활용(再活用) 기술(技術) 동향(動向))

  • Sohn, Jeong-Soo;Shin, Shun-Myung;Kang, Kyung-Seok;Choi, Mi-Jeong
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.50-60
    • /
    • 2007
  • There are several kinds of battery such as zinc-air battery, lithium battery, Manganese dry battery, silver oxide battery, mercury battery, sodium-sulphur battery, lead battery, nickel-hydrogen secondary battery, nickel-cadmium battery, lithium ion battery, alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents on the recycling technologies of the used lithium battery were analyzed. The range of search was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1986 to 2006. Patents were collected using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Trend on the Recycling Technologies for the used Manganese Dry Battery by the Patent Analysis (특허(特許)로 본 폐망간전지 재활용(再活用) 기술(技術) 동향(動向))

  • Shon, Jeong-Soo;Kang, Kyung-Seok;Han, Hye-Jung;Kim, Tae-Hyun;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.76-84
    • /
    • 2008
  • There are several kinds of battery such as zinc-air battery, lithium battery, manganese dry battery, silver oxide battery, mercury battery, sodium-sulphur battery, lead battery, nickel-hydrogen secondary battery, nickel-cadmium battery, lithium ion battery and alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents on the recycling technologies of the used manganese dry battery were analyzed. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) from 1986 to 2006. Patents were collected using key-words searching and filtered by filtering criteria. The trends of the patents were analyzed by the years, countries, companies, and technologies.

Lithium Ion Battery Recycling Industry in South Korea (국내 리튬이온전지 재활용 산업현황)

  • Kyoungkeun Yoo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • The objective of this article is to summarize the commercial lithium ion battery (LIB) recycling processes in Korea and to suggest new direction for LIB recycling. A representative LIB recycler, SungEel Hitech Co. has successfully operated the LIB recycling process for over 10 years, and new recycling processes were recently proposed or developed by many recycling companies and battery manufacturers. In the new recycling processes, lithium is recovered before nickel and cobalt due to the rapid rise in lithium prices, and metal sulfate solution as final product of recycling process can be supplied to manufacturers. The main problem that the new recycling process will face is impurities, which will mainly come from end-of-life electric vehicles or new additives in LIB, although the conventional processes must be improved for mass processing.

Status and Problems of Closed-Loop Supply Chain of Traditional Power Battery in China

  • Chen, Jinhui;Bayarsaikhan, Bayarsaikhan;Nam, Sootae;Jin, Chanyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.567-569
    • /
    • 2021
  • The power battery supply chain in China currently lacks stable cooperation and effective information exchange. The competitive pressure brings about irregular recycling channels, reducing the operation and efficiency of the power battery supply chain. Besides, some regular power battery recycling enterprises fabricate data to obtain subsidies by taking advantage of the loopholes in the relevant policies of the state on recycling subsidies. Due to the high price of recycling in the black market, some regular enterprises resell the batteries recycled through regular channels, later purchasing the batteries with no utilization value to obtain the national recycling subsidies by cheating at the same time. Fig. 3 shows the present network structure of the tradi tional Chinese power battery closed-loop supply chain

  • PDF

Risk assessment in international EV battery closed loop supply chain: developing a conceptual framework

  • Nataliia Grekova;Dong-WookKwak
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.201-203
    • /
    • 2022
  • Increasing global market of used electric vehicle (EV) battery encourages international firms to establish its subsidiary companies or business units specializing in battery recycling. Such kind of companies predominantly use closed loop supply chain (CLSC) for their operations of battery manufacturing and used battery recycling/reusing in global scale. However, EV battery recycling, as a relatively new industry, makes its global CLSC be exposed to various types of risks, which leads to inefficiency of supply processes and makes supply chains more complicated and vulnerable. Identifying, evaluating, and analyzing possible risks in CLSC has a great importance for optimization and increasing effectiveness for the global supply chain of used EV battery. Itwill assist to elaborate the efficient CLSC management and possible risk mitigation strategies to keep the global EV battery supply chain resilient and sustainable. This study aims to develop a conceptual framework for risk assessment in this new sector. Therefore, it will populate the framework with possible failure modes identified from various literature on EV battery recycling and closed loop supply chains so that future research can validate and utilize the conceptual framework.

  • PDF

Analysis of the Closed-Loop Supply Chain Focusing on Power Batteries in China

  • Chen, Jinhui;Jin, Chan-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.84-92
    • /
    • 2021
  • The research on waste power batteries in China in the past ten years reveals that the power battery recycling industry is enormous but marred with several challenges. A study of China's current power battery closed-loop supply chain revealed some issues in the power battery recycling industry, such as imperfect supply chain, small recycling scale, asymmetric information, and imperfect profit distribution mechanism. This paper uses the theory of corporate social responsibility and consumer choice to propose a closed-loop network of power batteries based on block chain technology and analyzes the existing closed-loop supply chain of power batteries. Consequently, this study provides a new idea for developing the power battery closed-loop supply chain by proposing the closed-loop network of power batteries based on blockchain technology.

Modeling Power Battery Supply Chain Based on System Dynamics

  • Chen, Jinhui;Jin, Chanyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.683-685
    • /
    • 2022
  • By comparing the status quo of recycling of new energy vehicles and waste power batteries at home and abroad, analyze the central relationship between recycling of waste power batteries and the interaction between various factors in China, consider the characteristics of blockchain technology, organically integrate into the reverse recycling network, and quantify the relevant factors. Make use of the constructed model to simulate, forecast, and compare and analyze whether to adopt blockchain technology and, on this basis, analyze the intrinsic relationship between various variables. To explore the different effects brought by changing different countermeasures according to different subjects, and expand it to the factor analysis in the whole reverse recycling supply chain to help the government and operators and enterprises to make more objective and scientific decisions, to provide a particular reference for promoting the recycling of waste power batteries and the development of power battery manufacturing industry in China.

  • PDF

The Current Situation for Recycling of Lithium Ion Batteries

  • Hiroshi Okamoto;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.252-256
    • /
    • 2001
  • The rapid development of communication equipment and information processing technology has led to a constant improvement in cordless communication. Lithium ion batteries used in cellular phones and laptop computers, in particular, have been in the forefront of the above revolution. These batteries use high value added raw materials and have a high and stable energy output and are increasingly coming into common use. The development of the material for the negative terminal has led to an improvement in the quality and efficiency of the batteries, whereas a reduction in the cost of the battery by researching new materials for the positive anode has become a research theme by itself. These long life batteries, it is being increasingly realized, can have value added to them by recycling. Research is increasingly being done on recycling the aluminum case and the load casing for the negative diode. This paper aims to introduce the current situation of recycling of lithium ion batteries. 1. Introduction 2. Various types of batteries and the situation of their recycling and the facts regarding recycling. 3. Example of cobalt recycling from waste Lithium ion secondary cell. 3-1) Flow Chart of Lithium ion battery recycling 3-2) Materials that make a lithium ion secondary cell. 3-3) Coarse grinding of Lithium ion secondary cell, and stabilization of current discharge 3-4) Burning 3-5) Grinding 3-6) Magnetic Separation 3-7) Dry sieving 3-8) Dry Classifying 3-9) Content Ratio of recycled cobalt parts 3-10) Summary of the Line used for the recovery of Cobalt from waste Lithium ion battery. 4. Conclusion.

  • PDF