• Title/Summary/Keyword: Battery of Life

Search Result 609, Processing Time 0.032 seconds

An Optimum Design of Secondary Battery Using Design of Experiments with Mixture (혼합물실험계획법을 이용한 2차전지의 최적설계)

  • Kim, Seong-Jun;Park, Jong-In
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.983-989
    • /
    • 2005
  • Secondary batteries with high performance are essential in widespread use of modern portable devices such as cellular phones and laptop computers. High energy density, long cycle life, and safety are some of important requirements for secondary battery. To achieve such characteristics, a mixing proportion of electrolyte solution ingredients in the battery should be carefully chosen. In this paper, using statistical design of mixture experiments (DOME), we attempt to find an optimum condition of designing the secondary battery. DOME has a distinct feature in that the experimental region is represented by simplex, rather than hypercube, because the sum of blend proportions should be unity. Several designs based upon this point have been proposed for mixture experiments. Among them, an extreme vertices design is employed in this paper because there are a couple of blend constraints to be considered. In order to investigate how the mixing proportion interacts with other manufacturing factors, a fractional factorial design is also included across the extreme vertices design. As a result, we find that the blend proportion of solution ingredients has a significant effect on battery performances. By simultaneously optimizing two battery capacities, this paper proposes an optimum blend proportion according to process factor settings.

  • PDF

Study of DC-DC Converter with Continuous output Current for Battery Charger (배터리 충전기를 위한 연속전류를 갖는 DC-DC 컨버터에 관한 연구)

  • Bayasgalan, Bayasgalan;Kim, Hong-Sung;Kim, Young-Sik;Lee, Young-Jin;Zayabaatar, Zayabaatar;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.193-195
    • /
    • 2008
  • This paper proposed dc-dc converter with continuous output current for battery charger. If we charge energy storage device by conventional boost converter, current flows into the discontinuous and as a result reduces the life-time of battery. The output voltage of dc-dc converter should be higher than voltage of across the battery, specially if charging by PV there is a fluctuation of voltage due change of insolation and temperature, therefore will boost and regulate this voltage. The proposal converter includes forward converter and the output voltage of the proposal converter looks like an input voltage and forward output voltage's add. This topology was tested on simulation and experimentation. Simulation and experimentation results indicated that the proposal topology is useful for battery charging because the output current of the converter flows continuously and perfectly.

  • PDF

Electrochemical Properties on High Temperature Operating Battery by Electrolyte and Salts in Electrodes (고온 작동형 전지의 전해질 및 전극내 첨가염 변화에 따른 전기화학적 특성 연구)

  • Choi, Yu-Song;Ha, Sang-Hyun;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.740-746
    • /
    • 2011
  • Thermally activated batteries have good stability, reliability and long shelf life. Due to these characteristics and operational mechanism, thermal batteries are usually applied to military power sources. Especially, Li/$FeS_2$ thermal batteries, which are used mostly in these days, use LiCl-KCl and LiBr-LiCl-LiF as electrolytes. The electrochemistry of thermal batteries have been researched for long time, however, electrochemical study using impedance spectroscopy was not published so much. Through this research, microscopic electrochemical research was investigated with electrochemical impedance spectroscopy(E.I.S). Electrolyte effects on Li/$FeS_2$ thermal battery was researched changing electrolytes, LiCl-KCl and LiBr-LiCl-LiF. Additionally, the salts, which are added to electrolytes, effects on thermal battery were researched. It is expected that the impedance spectroscopy analysis is applicable to not only thermal battery electrochemical study effectively, but also, thermal battery developments.

Experimental Verification of Electric Vehicle Using Electric Double Layer Capacitor

  • Ikeda, Hidehiro;Ajishi, Hideki;Hanamoto, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.171-178
    • /
    • 2013
  • This paper discusses to conduct experimental verification of two types of micro electric vehicles (EV) in order to realize improvement in electric mileage and shorten a charging time of the battery. First, electric double layer capacitor (EDLC) systems to use as a secondary battery are proposed. The internal resistance of EDLC is small compared with a rechargeable battery, and it is suitable for momentary charge-discharge of EV. Next, control circuits of the capacitors to increase the regenerative electric power are utilized. Then, a novel method to charge a main battery of the EV is introduced. Finally, experimental results demonstrate the validity of the proposed method.

SOC/SOH Estimation Method for AGM Battery by Combining ARX Model for Online Parameters Identification and DEKF Considering Hysteresis and Diffusion Effects (파라미터 식별을 위한 ARX 모델과 히스테리시스와 확산 효과를 고려한 이중 확장 칼만필터의 결합에 의한 AGM 배터리의 SOC/SOH 추정방법)

  • Tran, Ngoc-Tham;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.401-402
    • /
    • 2014
  • State of Charge (SOC) and State of Health (SOH) are the key issues for the application of Absorbent Glass Mat (AGM) type battery in Idle Start Stop (ISS) system which is popularly integrated in Electric Vehicles (EVs). However, battery parameters strongly depend on SOC, current rate and temperature and significantly change over the battery life cycles. In this research, a novel method for SOC, SOH estimation which combines the Auto Regressive with external input (ARX) method using for online parameters prediction and Dual Extended Kalman Filter (DEKF) algorithm considering hysteresis is proposed. The validity of the proposed algorithm is verified by the simulation and experiments.

  • PDF

Control Scheme of Emergency Power Supply for Elevator Emergency Call System (승강기의 비상 통화장치용 비상 전원장치의 충·방전 제어회로)

  • Park, Noh-Sik;Lee, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.40-48
    • /
    • 2015
  • In this paper, battery charging and discharging circuit with a single voltage power supply is proposed. The proposed circuit has the separated current path and charging-monitoring sequence control scheme. In the charging sequence, the proposed 2-level comparator combined with control signal of the micro-processor can control the constant charging current to protect the over current of the battery. Furthermore, the proposed circuit uses a periodic main power switch control to detect the discharging characteristics to estimate the approximated battery life-time. In the experiments, the proposed emergency power supply for emergency call system has 89% efficiency with 98% power factor. And the proposed sequence control scheme is well operated in the designed emergency power system.

Development of Digital Type Battery Charger based on Multi-Mode Control (디지털방식 다중제어 충전기 개발)

  • Byun Y.B.;Koo T.G.;Kim E.S.;Joe K.Y;Kim D.H.;Byun D.H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.308-311
    • /
    • 2001
  • Most of the battery charger for electric powered forklift truck are controlled by the method of 3-phased constant current and constant voltage. However, these chargers have several disadvantages like a large charger capacity, and a short battery life time. This paper presents a digital type battery charger based on multi-mode control adding a constant power control and several assistant controls in the conventional control. The whole control system is performed by a low cost one-chip micro-controller and completely digitize. So we can get a high precision control and a good reliability.

  • PDF

A Study on Estimation Method for Optimal Composition Rate of Hybrid ESS Using Lead-acid and Lithium-ion Batteries (연축전지와 리튬이온전지용 하이브리드 ESS의 최적구성방안에 관한 연구)

  • Park, Soo-Young;Ryu, Sang-Won;Park, Jae-Bum;Kim, Byung-Ki;Kim, Mi-Young;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.962-968
    • /
    • 2016
  • The large scaled lead-acid battery is widely used for efficient operation of the photovoltaic system in many islands. However, lithium-ion battery is now being introduced to mitigate the fluctuation of wind power and to replace lead-acid battery. Therefore, hybrid ESS(Energy Storage system) that combines lithium-ion battery with lead-acid battery is being required because lithium-ion battery is costly in present stage. Under this circumstance, this paper presents the optimal algorithm to create composition rate of hybrid ESS by considering fixed and variable costs in order to maximize advantage of each battery. With minimization of total cost including fixed and variable costs, the optimal composition rate can be calculated based on the various scenarios such as load variation, life cycle and cost trend. From simulation results, it is confirmed that the proposed algorithms are an effective tool to produce a optimal composition rate.

Modeling of the Thermal Behavior of a Lithium-Ion Battery Pack (리튬 이온 전지 팩의 열적 거동 모델링)

  • Yi, Jae-Shin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The performance and life-cycle costs of electric vehicle(EV) and hybrid electric vehicle(HEV) depend inherently on battery packs. Temperature uniformity in a pack is an important factor for obtaining optimum performance for an EV or HEV battery pack, because uneven temperature distribution in a pack leads to electrically unbalanced battery cells and reduced pack performance. In this work, a three-dimensional modeling was carried out to investigate the effects of operating conditions on the thermal behavior of a lithium-ion battery pack for an EV or HEV application. Thermal conductivities of various compartments of the battery were estimated based on the equivalent network of parallel/series thermal resistances of battery components. Heat generation rate in a cell was calculated using the modeling results of the potential and current density distributions of a battery cell.

A Study on Long-Term Cycling Performance by External Pressure Change for Pouch-Type Lithium Metal Batteries

  • Seong-Ju Sim;Bong-Soo Jin;Jun-Ho Park;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.314-320
    • /
    • 2024
  • Lithium dendrite formation is one of the most significant problems with lithium metal batteries. The lithium dendrite reduces the lithium metal batteries' cycling life and safety. To apply consistent external pressure to a lithium metal pouch cell, we design a press jig in this study. External pressure creates dense lithium morphology by preventing lithium dendrite formation. After 300 cycles at 1 C, the cells with the external pressure perform far better than the cells without it, with a cycling retention of 97.8%. The formation of stable lithium metal is made possible by external pressure, which also enhances safety and cyclability.