• Title/Summary/Keyword: Battery monitoring

Search Result 224, Processing Time 0.022 seconds

Development of Aging Diagnosis Device Through Real-time Battery Internal Resistance Measurement

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.129-135
    • /
    • 2022
  • Currently, the rapid growth of electric vehicles and the collection and disposal of waste batteries are becoming a social problem. The purpose of this paper is to propose a fast and efficient battery screening method through a safe inspection and storage method according to the collection and storage of waste batteries of electric vehicles. In addition, as the resistance inside the waste battery increases, an instantaneous voltage drop occurs, and there is a risk of overcharging and overdischarging compared to the initial state of the battery. Accordingly, there are great difficulties in operation, so the final goal of this study is to develop a device for diagnosing aging through real-time battery internal resistance measurement. Final result As a result of simulation of the internal resistance measurement test circuit through external impedance (AC), the actual simulation value was 0.05Ω, RS = Vrms / Irms => Vrms = 8.0036mV, Irms = 162.83Ma. Substitute the suggested method. The result was calculated as Rs = 0.0495Ω. It is possible to measure up to 64 impedances inside the aging diagnostic equipment that enables real-time monitoring of the developed battery cells, and the range can be changed according to the application method.

Basic Investigation into the Validity of Thermal Analysis of 18650 Li-ion Battery Pack Using CFD Simulation (CFD 해석을 적용한 18650 리튬-이온 배터리 팩의 열 해석 신뢰도 기초 분석)

  • SIM, CHANG-HWI;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.489-497
    • /
    • 2020
  • The Li-ion battery is considered to be one of the potential power sources for electric vehicles. In fact, the efficiency, reliability, and cycle life of Li-ion batteries are highly influenced by their thermal conditions. Therefore, a novel thermal management system is highly required to simultaneously achieve high performance and long life of the battery pack. Basically, thermal modeling is a key issue for the novel thermal management of Li-ion battery systems. In this paper, as a basic study for battery thermal modeling, temperature distributions inside the simple Li-ion battery pack (comprises of nine 18650 Li-ion batteries) under a 1C discharging condition were investigated using measurement and computational fluid dynamics (CFD) simulation approaches. The heat flux boundary conditions of battery cells for the CFD thermal analysis of battery pack were provided by the measurement of single battery cell temperature. The temperature distribution inside the battery pack were compared at six monitoring locations. Results show that the accurate estimation of heat flux at the surface of single cylindrical battery is paramount to the prediction of temperature distributions inside the Li-ion battery under various discharging conditions (C-rates). It is considered that the research approach for the estimation of temperature distribution used in this study can be used as a basic tool to understand the thermal behavior of Li-ion battery pack for the construction of effective battery thermal management systems.

Development of PC-based Auto Inspection System for Smart Battery Protection Circuit Module (PC기반의 스마트 배터리 보호모듈 자동 검사 시스템 개발)

  • Yoon, Tae-Sung;Jang, Gi-Won;Park, Ju-No;Lee, Jeong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.275-277
    • /
    • 2005
  • In a lithium-ion battery which is being used in many portable electronic goods, electrolyte is disaggregated and then the gas is happened when electric charging volt is over the 4.5V. So, the pressure on the safety valve is increased and electrolyte is leaked out in the cell. It leads to the risk of explosion. On the other hand, in the case which the battery is discharged excessively, the negative pole is damaged and the performance of the battery is deteriorated. The protection module of a lithium-ion battery is used for preventing such risk and the inspection system is needed to check the performance of such protection module. In this research, a PC-based auto inspection system is developed for the inspection of a battery protection module using Dallas chipset. In the inspection system, AVRl28 chip is used as a controller and the communication protocol is developed for the data communication between the protection module and the AVR128 chip. And GPIB interface is used for the control of measuring devices. Also, MMI environment is developed using LabView for convenient monitoring by the tester.

  • PDF

Development of the Emergency Generator Equipments Diagnosis System (비상용 발전설비 진단시스템 개발)

  • Lee, Sang-Cheol;Na, Chae-Dong;Lee, Seong-Beom;Yoo, Jae-Moon;Choi, Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2590-2593
    • /
    • 1999
  • This paper describes the development of Emergency Generator Equipments Diagnosis System for monitoring generator equipments and battery system. This system is capable of measuring on up to 20 separate sites of generator, engine and periphral equipment's. Battery system also capable of measure the setting time, float and discharge voltage of up to 240 cells in a single installation, and has the memory capacity to store battery's alarm data information on up to 200 separate sites. This system are easy to maintain and attain cost effectively, so that prepared for meeting the customer's service needs immediately. The system is additionally programmed with a each model, that will enable to accurately determine the generator equipments and remain battery capacity in a system following a short discharge test. It is also equipped with remote interrogation and control facilities.

  • PDF

Development of Black Box for EV Charging Infra based on Solar Power Generation and ESS (태양광발전 및 ESS 기반 전기차 충전인프라용 블랙박스 개발)

  • Kim, Dong-Wan;Park, Ji-Ho;An, Young-Joo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.160-167
    • /
    • 2018
  • In this paper, a black box, which is provided the reliability and user safety of home battery energy storage system connected with solar energy generation, is developed. In the developed scheme, a status and diagnosis data of battery management system, power conditioning system, solar energy generation and grid is measured. This status and diagnosis data is stored and displayed in the developed black box. In addition, this status and diagnosis data is stored and displayed in a monitoring system and a smart phone of user. A performance evaluation of the developed black box is carried out using emulator of home battery energy storage system connected with solar energy generation. Consequently, the developed black box is proved its superiority of the reliability and user safety.

Smart Power Management Using RTOS-based Uninterruptable Generator Supply

  • Lee, Chulju;Kang, Kyungtae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2016
  • An uninterruptible power supply (UPS) allows small companies and domestic users to cope with power outages; but existing designs lack flexibility of control and require expensive battery maintenance, with a cost proportional to the outage compensation time. We combine a compact synchronous generator with a battery, with 10% of the capacity that would otherwise be required, to obtain a UPS with reduced maintenance costs for the same performance. Any UPS must respond immediately to a power loss, and our uninterruptible generator supply (UGS) is therefore built around real-time scheduling of its internal operations; this also makes it suitable for integration into the industrial gateway. The UGS is based on a real-time operating system, with an integrated wireless module providing connectivity to a web server, for monitoring and management, which can be performed remotely on a mobile device.

A Study on Design and Verification of Power Monitoring Unit for Unmanned Aerial Vehicle (무인항공기용 전원모니터링장치 설계 및 검증에 관한 연구)

  • Woo, Hee-Chae;Kim, Young-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • This paper describes a Power Monitoring Unit (PMU) for Unmanned Aerial Vehicle (UAV) electrical system, It is designed for the PMU which performs data sensing of generator, transformer rectifier unit (TRU), battery and gear box installed in UAV and operate power ON/OFF devices of mission equipment. The PMU measures the voltage and current for the aircraft power source (generators, transformer rectifier unit and battery), measures the pressure and temperature of the gearbox, and performs the mission equipment power command received from the mission computer. The PMU was designed to meet the requirements of the UAV, and was performed through structure/thermal analysis, environmental test, EMI test and ground/flight tests.

COMS EPS PRELIMINARY DESIGN

  • Koo, Ja-Chun;Kim, Eui-Chan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.220-223
    • /
    • 2006
  • The COMS(Communication, Ocean and Meteorological Satellite) EPS(Electrical Power Subsystem) is derived from an enhanced Eurostar 3000 EPS which is fully autonomous operation in normal conditions or in the event of a failure and provides a high level of reconfiguration capability and flexibility. This paper introduces the COMS EPS preliminary design result. The COMS EPS consists of a battery, a solar array wing, a PSR(Power Supply Regulator), a PRU(Pyrotechnic Unit), a SADM(Solar Array Drive Mechanism) and relay and fuse brackets. This can offer a bus power capability of 3 kW. The solar array is made of a deployable wing with two panels. One type of solar cells is selected as GaAs/Ge triple junction cells. Li-ion battery is base lined with ten series cell module of five cells in parallel. PSR associated with battery and solar array generates a power bus fully regulated 50 V. Power bus is centralised protection and distribution by relay and fuse brackets. PRU provides power for firing actuators devices. The solar array wing is routed by the SADM under control of the AOCS(Attitude Orbit Control Subsystem). The control and monitoring of the EPS especially of the battery, is performed by the PSR in combination with on-board software.

  • PDF

Diagnosis of State Of Health(SOH) for Battery Management System(BMS) (축전지 관리시스템(BMS)을 위한 건강상태(SOH) 진단방법)

  • Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.558-562
    • /
    • 2006
  • Although secondary batteries, called rechargeable batteries, are very important energy elements in modern society, their application is hindered by the typical nonlinear and irreversible characteristics. Precise monitoring of the state of health(SOH) for each battery cell on line is crucial for stable operation and proper management of them. This paper proposes diagnostic method of the SOH for a battery cell on line without interruption on its operation nor bad effect on its life. This paper practically diagnoses on 120 industrial batteries and provides some guide lines to decide whether to exchange or not.

Vibration-based Energy Harvester for Wireless Condition Monitoring System (무선 상태감시 시스템용 진동 기반 에너지 획득 장치)

  • Cho, Sung-Won;Son, Jong-Duk;Yang, Bo-Suk;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.393-399
    • /
    • 2009
  • Historically, industrial condition monitoring has been performed by costly hard-wired sensors or infrequent checks by maintenance personnel equipped with hand held monitoring equipment. Self- powered wireless condition monitoring systems provides on-line monitoring of critical plant and machinery providing major operating cost benefits. A vibration energy harvester(VEH) is a device that converts kinetic energy occurred by machine vibration into useable electrical energy. Using VEHs to power wireless monitoring systems can yield significant benefits: increased reliability, lower life time costs and no battery disposal issues, etc. This paper proposes the novel prototype design and manufacturing of a VEH that can eliminate the effect by failed batteries.