• Title/Summary/Keyword: Battery management technology

Search Result 199, Processing Time 0.023 seconds

A Study on developing the Battery Management System for Electric Vehicle (전기자동차용 배터리 관리 시스템에 관한 연구)

  • Han, A-Gun;Park, Jae-Hyeon;Choo, Yeon-Gyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.882-883
    • /
    • 2013
  • With the development of the society, pure electric vehicles will be surely important of the future. Electric vehicle requires various technology like motor driving, battery management, operational efficiencies and so on. Battery management is indeed the most important to enhance battery's performance and life. This paper has deeply discussed and studied on the lithium-polymer battery management system of pure electric vehicle. First of all we have analyzed the characteristic of the lithium-polymer batteries and the factors influenced on the state of charge. Then a logical SOC measuring method has been raised, which is the combination of open circuit voltage and Ah integration. The next we will introduce the design of battery management system, the battery management system performs many functions, such as inspecting the whole process, when it's running cell equalization protecting and diagnosing the battery, estimating the state of charge. The module design style including microcontroller, data aquisition module, charging control module and serial communication module. To arrive at conclusions, the battery management system which this paper has introduced is reliable and economical.

  • PDF

Computational Design of Battery System for Automotive Applications (전기자동차 배터리 시스템 개발을 위한 전산설계기술)

  • Jung, Seunghun
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.37-40
    • /
    • 2020
  • Automotive battery system consists of various components such as battery cells, mechanical structures, cooling system, and control system. Recently, various computational technologies are required to develop an automotive battery system. Physics-based cell modeling is used for designing a new battery cell by conducting optimization of material selection and composition in electrodes. Structural analysis plays an important role in designing a protective system of battery system from mechanical shock and vibration. Thermal modeling is used in development of thermal management system to maintain the temperature of battery cells in safe range. Finally, vehicle simulation is conducted to validate the performance of electric vehicle with the developed battery system.

Energy Management Technology Development for an Independent Fuel Cell-Battery Hybrid System Using for a Household (가정용 독립 연료전지-배터리 하이브리드 에너지 관리 기술 개발)

  • YANG, SEUGRAN;KIM, JUNGSUK;CHOI, MIHWA;KIM, YOUNG-BAE
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.155-162
    • /
    • 2019
  • The energy management technology for an independent fuel cell-battery hybrid system is developed for a household usage. To develop an efficient energy management technology, a simulation model is first developed. After the model is verified with experimental results, three energy management schemes are developed. Three control techniques are a fuzzy logic control (FLC), a state machine control (SMC), and a hybrid method of FLC and SMC. As the fuel cell-battery hybrid system is used for a house, battery state of charge (SOC) regulation is the most important factor for an energy management because SOC should be kept constant every day for continuous usage. Three management schemes are compared to see SOC, power split, and fuel cell power variations effects. Experimental results are also presented and the most favorable strategy is the state machine combined fuzzy control method.

Design Considerations of a Lithium Ion Battery Management System (BMS) for the STSAT-3 Satellite

  • Park, Kyung-Hwa;Kim, Chol-Ho;Cho, Hee-Keun;Seo, Joung-Ki
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.210-217
    • /
    • 2010
  • This paper introduces a lithium ion battery management system (BMS) for the STSAT-3 satellite. The specifications of a lithium ion battery unit are proposed to supply power to the satellite and the overall electrical and mechanical designs for a lithium ion battery management system are presented. The structural simulation results will be shown to confirm the behavior of both the BMS and the cells.

Virtual Environment Modeling for Battery Management System

  • Piao, Chang-Hao;Yu, Qi-Fan;Duan, Chong-Xi;Su, Ling;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1729-1738
    • /
    • 2014
  • The offline verification of state of charge estimation, power estimation, fault diagnosis and emergency control of battery management system (BMS) is one of the key technologies in the field of electric vehicle battery system. It is difficult to test and verify the battery management system software in the early stage, especially for algorithms such as system state estimation, emergency control and so on. This article carried out the virtual environment modeling for verification of battery management system. According to the input/output parameters of battery management system, virtual environment is determined to run the battery management system. With the integration of the developed BMS model and the external model, the virtual environment model has been established for battery management system in the vehicle's working environment. Through the virtual environment model, the effectiveness of software algorithm of BMS was verified, such as battery state parameters estimation, power estimation, fault diagnosis, charge and discharge management, etc.

Development of Independent 1 kW-class PEMFC-Battery Hybrid System for a Building (건물용 독립형 1kW급 PEMFC-배터리 하이브리드 시스템 기술 개발)

  • Yang, Seug Ran;Kim, Jung Suk;Choi, Mi Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • We have developed 1 kW-class PEMFC-battery hybrid system independently powering to the building, through the process of system design, current load characteristics analysis, power system configuration for demonstration site and performance evaluation. In order to use the fuel cell and battery as the hybrid type, a control technology for the charging/discharging decision and charging speed of the battery is required rather than using fuel cell. Also output power distribution between PEMFC and the battery is a core of energy management technology. It is confirmed that it is possible to supply independently 1kW powering the building to ensure optimal energy management through the power control experiment of the hybrid system.

The study on a ship energy management system applied rechargeable battery

  • Jang, Jae-Hee;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.202-207
    • /
    • 2014
  • Recently, the study of energy saving technology of ships begins in earnest, as energy saving policies are performed all around the world. SEMS (Ship Energy Management System) is one of the techniques to increase energy efficiency by applying to a independent system like a ship and offshore. SEMS is composed of Cooling Pump Control System (CPCS), Renewable Energy Emergency Power Control System (REEPCS), Load Control System (LCS), and Heating, Ventilation, and Air Conditioning System (HVACS). SEMS is enable to increase energy efficiency and achieve integrated management through the interlocking of each system. Especially, it is possible to improve the flexibility of the selection of the generator capacity in conjunction with a rechargeable battery and renewable energy. In this paper, SEMS applied rechargeable battery is proposed and simulated. By applying the rechargeable battery, it was confirmed that SEMS applied rechargeable battery can be operated at optimum efficiency of the generator.

Experimental Study of Cooling Performance Comparison of a 18650 Li-ion Unit Battery Module (Air Cooling vs. PCM-based Cooling) (18650 리튬-이온 단일 배터리 모듈의 냉각 성능 비교에 관한 실험적 연구(공기 냉각과 PCM 기반 냉각))

  • BAEK, SEOUNGSU;YU, SIWON;KIM, HAN-SANG
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.2
    • /
    • pp.212-218
    • /
    • 2018
  • Li-ion battery system is regarded as one of the most potent power sources for electrified power-trains. For the Li-ion battery system to be widely adopted in automotive applications, the performance, safety, and cycle life issues need to be properly addressed. These issues are closely related to the thermal management of battery system. Especially, the effective cooling module design is the core part for the novel battery thermal management system development. In this paper, an experimental approach was carried out as a basic part of comprehensive battery thermal management research. The main goal of this paper is to present a comparison of two cooling systems (air cooling and phase change material (PCM) based cooling) of the unit 18650 battery module. The temperature rise with different battery discharge rate (c-rate) was mainly investigated and analyzed for two types of battery cooling systems. It is expected that this study can properly contribute to providing basic insights into the design of robust battery thermal management system for vehicular applications.

Basic Investigation into the Validity of Thermal Analysis of 18650 Li-ion Battery Pack Using CFD Simulation (CFD 해석을 적용한 18650 리튬-이온 배터리 팩의 열 해석 신뢰도 기초 분석)

  • SIM, CHANG-HWI;KIM, HAN-SANG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.489-497
    • /
    • 2020
  • The Li-ion battery is considered to be one of the potential power sources for electric vehicles. In fact, the efficiency, reliability, and cycle life of Li-ion batteries are highly influenced by their thermal conditions. Therefore, a novel thermal management system is highly required to simultaneously achieve high performance and long life of the battery pack. Basically, thermal modeling is a key issue for the novel thermal management of Li-ion battery systems. In this paper, as a basic study for battery thermal modeling, temperature distributions inside the simple Li-ion battery pack (comprises of nine 18650 Li-ion batteries) under a 1C discharging condition were investigated using measurement and computational fluid dynamics (CFD) simulation approaches. The heat flux boundary conditions of battery cells for the CFD thermal analysis of battery pack were provided by the measurement of single battery cell temperature. The temperature distribution inside the battery pack were compared at six monitoring locations. Results show that the accurate estimation of heat flux at the surface of single cylindrical battery is paramount to the prediction of temperature distributions inside the Li-ion battery under various discharging conditions (C-rates). It is considered that the research approach for the estimation of temperature distribution used in this study can be used as a basic tool to understand the thermal behavior of Li-ion battery pack for the construction of effective battery thermal management systems.

Development of Hybrid BMS(Battery Management System) Algorithm for Lead-acid and Lithium-ion battery (연축전지와 리튬이온전지용 하이브리드 BMS 알고리즘 개발)

  • Oh, Seung-Taek;Kim, Byung-Ki;Park, Jae-Beom;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3391-3398
    • /
    • 2015
  • Recently, the large scaled lead-acid battery is widely introduced to efficient operation of the photovoltaic system in many islands. but the demand of lithium-ion battery is getting increased by the operation of wind power and replacement of the lead-acid battery. And also, under the renewable portfolio standard(RPS) and energy efficiency resource standard(EERS) policy of Korea government, the introduction of energy storage system(ESS) has been actively increased. Therefore, this paper presents the operation algorithm of hybrid battery management system(BMS) using the lead-acid and lithium-ion batteries, in order to maximize advantage of each battery. In other words, this paper proposed the algorithm of state of charge(SOC) and hybrid operation algorithm to calculate the optimal composition rate considering the fixed cost and operation cost of each battery. From the simulation results, it is confirmed that the proposed algorithms are an effective tool to evaluate SOC and to optimally operate hybrid ESS.