Nowadays mobile devices are used for various applications such as making voice/video calls, browsing the Internet, listening to music etc. The average battery consumption of each of these activities and the length of time a user spends on each one determines the battery lifetime of a mobile device. Previous methods have provided predictions of battery lifetime using a static battery consumption rate that does not consider user characteristics. This paper proposes an approach to predict a mobile device's available battery lifetime based on usage patterns. Because every user has a different pattern of voice calls, data communication, and video call usage, we can use such usage patterns for personalized prediction of battery lifetime. Firstly, we define one or more states that affect battery consumption. Then, we record time-series log data related to battery consumption and the use time of each state. We calculate the average battery consumption rate for each state and determine the usage pattern based on the time-series data. Finally, we predict the available battery time based on the average battery consumption rate for each state and the usage pattern. We also present the experimental trials used to validate our approach in the real world.
Recently, the mass production of Energy storage system (ESS) is actively perform around world. Energy storage system is a technique that stores power to energy storage device to supply energy into grid and load at peak-load. Therefore, the efficient energy management is available by using ESS system. The life of Lithium-ion battery is varied corresponding to the power usage, especially selected depth of discharge (DOD). The lifetime of battery is the one of the most issue of the ESS system because of its stability and reliability. Therefore, lifetime management of battery and power converter of ESS module is required. In this paper, the battery lifetime management method estimating residual power and lifetime of lithium ion battery of ESS system is proposed. Also, total avenue prediction of ESS system is simulated considering the total lifetime of battery.
The lifetime of a lithium-ion battery is one of the most important issues of the energy storage system (ESS) because of its stable and reliable operation. In this paper, the lifetime management method of the lithium-ion battery for energy storage system is proposed. The lifetime of the lithium-ion battery varies, depending on the power usage, operation condition, and, especially the selected depth of discharge (DOD). The proposed method estimates the total lifetime of the lithium-ion battery by calculating the total transferable energy corresponding to the selected DOD and achievable cycle (ACC) data. It is also demonstrated that the battery model can obtain state of charge (SOC) corresponding to the ESS operation simultaneously. The simulation results are presented performing the proposed lifetime management method. Also, the total revenue and entire lifetime prediction of a lithium-ion battery of ESS are presented considering the DOD, operation and various condition for the nations of USA and Korea using the proposed method.
본 논문에서는 배터리의 비선형적 방전 특성인 회복효과를 사용하여 배터리의 사용 시간을 연장하는 기법을 제안한다. 일반적으로 배터리의 사용 시간을 예측할 때에는 배터리 내부에 저장된 에너지가 일정하다고 가정하지만, 실제로는 배터리 내부의 화학 반응 때문에 배터리를 계속 방전시키지 않고 중간에 쉬는 시간을 만들어주면 더 많은 에너지를 끌어낼 수 있는데 이를 회복효과라 한다. 제안하는 기법에서는 다수의 배터리 셀을 교대로 방전시킴으로서 기기의 전력 공급은 그대로 유지하면서 배터리 셀 일부를 쉬게 하여 회복효과를 발생시키고, 이에 따라 배터리의 사용 시간을 연장시킬 수 있다. 실험 결과, 2개의 배터리 셀을 기존처럼 병렬 연결하여 방전시키는 것에 비해 배터리 셀을 교대로 방전시키면 배터리 사용시간이 약 7% 증가하였다.
Emerging demands for rechargeable battery for various applications needs more effective battery management system such as the prediction of the usable time about a battery. Many prediction methods have been suggested but none of them come into bounds of reliability. In this paper, we proposed a new prediction algorithm for the remaining capacity of a rechargeable battery by using the transformed curve based on its impedance. Hardware for monitoring a battery was designed and made. Through a series of experiment, we showed the effectiveness of the proposed prediction algorithm of a battery's remaining capacity.
일반 납축전지는 차량의 시동 성능 위주로 최적 설계되어 있다. 최근 차량 전장 시스템과 납축전지를 활용한 연비기술 적용의 증가로 납축전지의 사용 빈도가 늘어나고 있다. 연비기술 적용은 납축전지의 잦은 충방전 반응을 일으켜 납축전지 내구 수명을 단축시키고 있다. 본 연구에서는 납축전지의 노화 수명 모델 구현을 통해 배터리 내구 수명을 예측하는 방법을 제시하고자 한다. 납축전지의 노화에 영향을 미치는 요인은 방전율, 충전 시간, 완충 시간, 온도 조건 등이 있다. 본 논문에서는 납축전지의 동적 거동을 예측하기 위하여 전기화학반응 속도론, 이온의 전달현상, 전극 공극률의 시간에 따른 변화를 고려하였다. 수명 예측을 위해서 노화 메커니즘 중 노화에 가장 큰 영향을 주는 극판 부식 현상과 활물질 탈락을 노화 모델링에 반영하였다. 개발된 납축전지의 노화 모델을 검증하기 위하여 납축전지의 가속 충방전 시험을 수행하였다.
하이브리드 애드 혹 네트워크는 통합 네트워크로서 홈 네트워크, 텔레매틱스, 센서 네트워크 등에서 다양한 종류의 서비스를 제공할 수 있다. 특히 애드 혹 네트워크의 각 노드는 이웃 노드들에 데이터를 전송해야 하므로, 전체 에너지의 사용량을 줄이면서, 균형적으로 에너지를 사용하게 해야 한다. 균형적으로 에너지를 사용하지 않으면 부하가 걸린 노드에서 빠른 시간 내에 노드 전송 실패가 나타날 수 있으며, 이는 네트워크 분할 및 네트워크의 기능제공 시간이 단축되는 것을 의미한다. 그러므로 본 논문에서는 에너지의 효율성을 고려한 라우팅 알고리즘에 관한 연구를 수행하였다. 제안한 알고리즘에서는 예측모델을 이용해 각 노드의 에너지의 잔량을 예측하므로, 라우팅 경로의 설정시 에너지 정보를 얻기 위한 많은 부하를 감소시킬 수 있으며, 전체 노드에 걸쳐 에너지의 사용을 균형적으로 사용하게 할 수 있다. 이에 따라 에너지의 손실의 감소 및 네트워크의 가용시간을 연장할 수 있다
International Journal of Internet, Broadcasting and Communication
/
제16권3호
/
pp.236-241
/
2024
Due to the recent emphasis on carbon neutrality and environmental regulations, the global electric vehicle (EV) market is experiencing rapid growth. This surge has raised concerns about the recycling and disposal methods for EV batteries. Unlike traditional internal combustion engine vehicles, EVs require unique and safe methods for the recovery and disposal of their batteries. In this process, predicting the lifespan of the battery is essential. Impedance and State of Charge (SOC) analysis are commonly used methods for this purpose. However, predicting the lifespan of batteries with complex chemical characteristics through electrical measurements presents significant challenges. To enhance the accuracy and precision of existing measurement methods, this paper proposes using a Long Short-Term Memory (LSTM) model, a type of deep learning-based recurrent neural network, to diagnose battery performance. The goal is to achieve safe classification through this model. The designed structure was evaluated, yielding results with a Mean Absolute Error (MAE) of 0.8451, a Root Mean Square Error (RMSE) of 1.3448, and an accuracy of 0.984, demonstrating excellent performance.
A new method is proposed based on a hidden Markov model (HMM) to estimate and analyze battery states of health. Battery system health states are defined according to the relationship between internal resistance and lifetime of cells. The source data (terminal voltages and currents) can be obtained from vehicular battery models. A characteristic value extraction method is proposed for HMM. A recognition framework and testing datasets are built to test the estimation rates of different states. Test results show that the estimation rates achieved based on this method are above 90% under single conditions. The method achieves the same results under hybrid conditions. We can also use the HMMs that correspond to hybrid conditions to estimate the states under a single condition. Therefore, this method can achieve the purpose of the study in estimating battery life states. Only voltage and current are used in this method, thereby establishing its simplicity compared with other methods. The batteries can also be tested online, and the method can be used for online prediction.
Journal of Advanced Marine Engineering and Technology
/
제39권7호
/
pp.754-759
/
2015
오늘날 선박 내 승선자의 위치인식과, 이를 모니터링을 하는 데 저 전력 근거리 통신시스템이 많이 개발되고 있으며, 이러한 저 전력 근거리 통신을 위해서 BLE, Zigbee 등과 같은 저 전력 통신 모듈이 이용되고 있다. 저 전력 통신 모듈은 1:N 통신이 가능하고, 휴대폰, 인체 등의 이동 물체에 탑재할 수 있어 각광을 받고 있다. 저 전력 통신모듈을 사용하는 데 있어서, 배터리의 용량이나 크기가 각각 시스템의 작동시간이나 통신모듈의 디자인에 중요한 요소가 된다. 따라서 모듈은 가급적 작게 만들어져야 하고, 배터리는 모듈의 크기보다 더 작게 선정되는 것이 바람직하다. 본 논문에서는 전송률 1/250 조건에서 데이터 시트와 방전특성 그래프를 참조하여 SIVCP용 BLE 모듈에 사용되고 있는 배터리의 이론 수명을 산출하고, 위와 동일한 전송률과 1/5000 전송률의 조건에서 각각 송전전류와 저속모드 전류를 검출하여 실험수명을 산출하며, 전송률을 1/25로 하여 수일 동안 고속 방전 장기 실험수명을 측정한다. 이와 같은 실험을 통하여, 배터리의 수명예측과 수명연장 방법을 실험적으로 검증하고, 이를 선박의 용도와 승객의 유형에 따른 적절한 배터리 선정에 활용하고자 한다. 모듈의 전송률과 배터리 크기 선정은 모듈의 설계비용의 감소, 배터리 유지관리 및 승객의 편의 등에 중요한 영향을 미치는 요소가 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.