• Title/Summary/Keyword: Battery fire

Search Result 104, Processing Time 0.024 seconds

Analysis of Car Fire Cases Related to a Lithium Battery and Cause Investigation Technique (리튬배터리와 관련된 차량화재 사례 및 원인조사 기법 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.98-106
    • /
    • 2019
  • As lithium batteries have been used for car navigation systems and as the second battery for black boxes, lithium battery-related car fires have often occurred. In the case a lithium battery is the fire origin, a fire investigation technique has not been established to determine if a battery ignites or whether the lithium battery is damaged by fire. This study introduced car fire cases related to lithium batteries, analyzed the causes of a fire of a lithium battery, and proposed fire investigation techniques to objectively determine if a lithium battery ignites or whether a lithium battery is damaged by fire after external ignition.

A Consideration on Improvement of Safe Lithium Battery Air Transportation (리튬 전지의 안전한 항공 운송을 위한 개선 방향 고찰)

  • Joe, Hunmyung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.135-142
    • /
    • 2017
  • As PED(Personal Electronic Device) market has been rapidly grown, the demand on Lithium battery, which is most commonly used power source of PED, also has been increased. Dew to this trend, the amount of Lithium battery air transportation is also increasing. However, it should be treated very carefully because Lithium is one of very explosive metal. So ICAO, IATA and civil aviation agencies try to enhance the safety of Lithium battery air transportation by aircraft certification and operating regulations. To enhance in-flight safety, the aircraft for transporting Lithium battery should equip certified fire extinguishing system. But recent studies find that Halon, currently used extinguishing agent, is not effective on extinguishing Lithium battery fire. Besides, there is no certified Halon replacement for air use and no acceptable specific minimum performance standard(MPS) for Lithium battery fire. For this issue, a study on characteristics and establishing MPS of Lithium battery fire is needed for safe air transportation of Lithium battery.

Exposure Assessment Study on Lithium-Ion Battery Fire in Explosion Test Room in Battery Testing Facility

  • Mi Sung Jo;Hoi Pin Kim;Boo Wook Kim;Richard C. Pleus;Elaine M. Faustman;Il Je Yu
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.114-117
    • /
    • 2024
  • A lithium-ion battery is a rechargeable battery that uses the reversible reduction of lithium ions to store energy and is the predominant battery type in many industrial and consumer electronics. The lithium-ion batteries are essential to ensure they operate safely. We conducted an exposure assessment five days after a fire in a battery-testing facility. We assessed some of the potentially hazardous materials after a lithium-ion battery fire.We sampled total suspended particles, hydrogen fluoride, and lithium with real-time monitoring of particulate matter (PM) 1, 2.5, and 10 micrometers (㎛). The area sampling results indicated that primary potential hazardous materials such as dust, hydrogen fluoride, and lithium were below the recommended limits suggested by the Korean Ministry of Labor and the American Conference of Governmental Industrial Hygienists Threshold Limit Values. Based on our assessment, workers were allowed to return to work.

Analysis of Fire Risk through Battery Fire Cases and Experiments of Wearable Devices (웨어러블 기기의 배터리화재사례와 실험을 통한 화재위험성 분석)

  • Lee, Jung-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • This study analyzed ignition probability about Lithium-polymer batteries of what variously were being produced wearable devices recently. The study analyzed ignition probability by PCM(Protection Circuit Module) operating state and overcharged, over-discharged, exposed to high temperatures of Lithium polymer batteries, analyzing wearable devices on the market. Then it classified experimental results to implement analysis comparison about weight, X-ray imaging, battery decomposition. With these experiments, the study analyzed combustion-possibility and fire patterns. These statistics will be used to measure and verify the cause of a fire when identify wearable devices using Lithium-polymer batteries.

A Study on the Identification Technique and Prevention of Combustion Diffusion through ESS (Energy Storage System) Battery Fire Case (ESS (에너지 저장장치) 배터리 화재사례를 통한 감식기법 및 연소 확산방지에 관한 연구)

  • Lee, Jung-Il
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.383-391
    • /
    • 2020
  • Purpose: To identify internal self ignition and ignition caused by external flames in energy storage rooms, and to analyze the difference between ignition due to overheating and ignition caused by external heat sources. Method: membrane melting point measurement, battery external hydrothermal experiment, battery overcharge experiment, comparative analysis of electrode plate during combustion by overcharge and external heat, overcharge combustion characteristics, external hydrothermal fire combustion characteristics, 3.4 (electrode plate comparison) / 3.5 (overcharge) /3.6 (external sequence) analysis experiment. Result: Since the temperature difference was very different depending on the position of the sensor until the fire occurred, it is judged that two temperature sensors per module are not enough to prevent the fire through temperature control in advance. Conclusion: The short circuit acts as an ignition source and ignites the mixed gas, causing a gas explosion. The electrode breaks finely due to the explosion pressure, and the powder-like lithium oxide is sparked like a firecracker by the flame reaction.

A Study on Explosion and Fire Risk of Lithium-Ion and Lithium-Polymer Battery (리튬이온 및 리튬폴리머 배터리의 폭발과 화재 위험성에 관한 연구)

  • Lee, Bum Joo;Choi, Gyeong Joo;Lee, Sang Ho;Jeong, Yeon Man;Park, Young;Cho, Dong Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.855-863
    • /
    • 2017
  • Because Li-ion battery and Li-Polymer battery have high-energy storage density, they are used for various electronic devices such as electronic cigarette, electronic bicycle, drone, second battery, even golf cart and electronic car. Recently, however, battery explosion is sometimes occurring on electronic devices using Li-ion battery and is becoming serious as bodily harm is breaking out due to explosion. For this, this paper described the Li-ion Battery's operating principles and verified the cause of explosion by overload tests caused by the high-energy storage density. According to the these experiments, we conducted a study to develope scanning techniques of fire and safety measures.

ADAMS Simulation on the Scale Model of the FOOB System (연식주퇴 시스템 축소 모델에 대한 ADAMS 해석)

  • Kim, Jong-Hyuk;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • Due to the improvement of science technology, the future tank system will have the multi-function for more powerful firing. and the tank, mounted this multi-function, must be lighter to maintain the mobility. Therefore, new brecoil technology would be necessary to reduce the recoil force for lighter platform. The present study covers a FOOB(Fire-Out0-Of-Battery) system that can reduce the recoil force dramatically. The firing sequence of the FOOB system is radically different from that of a conventional system. The gun is latched in out-of-battery position prior to firing. As soon as firing is occurred, the gun is unlatched and accelerated. The forward momentum is imparted to the recoiling parts. This momentum is opposed by the ballistic force imparted by firing and the recoil force and recoil length will be reduced. In this study, the ADAMS simulation has been performed with the scale model of the FIB(Fire-In-Battery) system and the FOOB system. The ADAMS simulation results show that the FOOB system could reduce the operating time and recoil length and the recoil force.

A Study on the Forward Momentum of a Soft Recoil System (연식주퇴 시스템의 전방운동량에 관한 연구)

  • Park, Sun-Young;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kang, Kuk-Jeong;Ahn, Sang-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.976-981
    • /
    • 2010
  • A soft-recoil or FOOB (Fire-Out-Of-Battery) system can reduce the recoil force considerably. Its firing sequency is different from that of a conventional or FIB (Fire-In-Battery) system. In FOOB system, the gun is latched and preloaded in its battery position prior to firing. When unlatched, the gun is accelerated to the forward direction and then the forward momentum of the recoil part is generated. Since this momentum reduces the recoil impulse, the recoil force will decrease significantly. When designing the soft-recoil system it is important to design the forward momentum profile of a recoiling part. In the present study, the method to determine the forward momentum has been studied and its optimum value has been obtained theoretically. The numerical simulation of the soft-recoil system is performed to show that the present soft-recoil system works functionally well.

Study on the Explosion and Fire Risks of Lithium Batteries Due to High Temperature and Short Circuit Current (고온 및 단락전류에 따른 리튬배터리의 폭발 및 화재 위험성에 관한 연구)

  • Sim, Sang-Bo;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.114-122
    • /
    • 2016
  • This study is to analyze the explosion and fire risks due to high temperature and short circuit current of Lithium batteries. This study selected the typical types of Li-polymer batteries and Li-ion batteries as the test samples. The result of explosion risk assessment due to the high temperature showed that, while a Li-polymer battery had $170^{\circ}C$ explosion on average, a Li-ion battery had $187^{\circ}C$ explosion. The measurement result of temperature increase due to short circuit current revealed that, in case that protection circuit module (PCM) was normally working, there was little of temperature increase due to over-current limitation. However, in case that PCM was out of order, the temperature of a Li-polymer battery increased up to an average of $115.7^{\circ}C$ and the temperature of a Li-ion battery increased up to an average of $80.5^{\circ}C$, which showed the higher risks of fire and burn.

Analysis of Discharge Characteristics and Fire Risk of Mobile Phone Batteries according to the Concentration of Salt Water (염수농도에 따른 휴대폰 배터리의 방전특성과 화재 위험성 분석)

  • Woo, Jin-Su;So, Soo-Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.66-71
    • /
    • 2020
  • The process of discharging batteries using salt water, when used for the disposal of a lithium-ion (Li-ion) batteries, is likely to cause a fire. However, there is a dearth of studies in the literature on the risk of fire while discharging mobile phone batteries in salt water. In order to investigate the possibility of fire by elucidating the discharge characteristics and the generation of heat, we conducted experiments by varying the concentration of the salt water, number of overlapping batteries, and type of the mobile phone batteries used as experimental specimen. The discharging voltage and the temperature of the batteries were measured, and the fire risk was predicted by analyzing the data. The results of the experiment showed that the higher the salt water concentration, the greater the discharge value of the mobile phone battery and the higher the exothermic temperature. Moreover, the exothermic temperatures of the overlapping batteries were higher than that of the single battery submerged in salt water. The highest exothermic temperature points of the battery occurred at the positive and negative poles.