• 제목/요약/키워드: Battery energy storage systems

검색결과 224건 처리시간 0.031초

Design of a renewable energy system with battery and power-to-methanol unit

  • Andika, Riezqa;Kim, Young;Yun, Choa Mun;Yoon, Seok Ho;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • 제36권1호
    • /
    • pp.12-20
    • /
    • 2019
  • An energy storage system consisting of a battery and a power-to-methanol (PtM) unit was investigated to develop an energy storage system for renewable energy systems. A nonlinear programming model was established to optimize the energy storage system. The optimal installation capacities of the battery and power-to-methanol units were determined to minimize the cost of the energy system. The cost from a renewable energy system was assessed for four configurations, with or without energy storage units, of the battery and the power-to-methanol unit. The proposed model was applied to the modified electricity supply and demand based on published data. The results show that value-adding units, such as PtM, need be included to build a stable renewable energy system. This work will significantly contribute to the advancement of electricity supply and demand management and to the establishment of a nationwide policy for renewable energy storage.

MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계 (Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink)

  • 미흐렛 가아브레슬라세 마루;김민;변기식;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

전력저장전지시스템의 경제성 평가 (Economic Evaluations of Secondary Battery Energy Storage Systems in Power Distribution Systems)

  • 노대석;오용택
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권4호
    • /
    • pp.152-160
    • /
    • 2000
  • This paper presents an efficient evaluation method on the role of new energy storage systems, especially the secondary Battery Energy Storage (BES) systems, in the case where they are interconnected with the power distribution systems. It is important to perform the economic evaluation for the new energy storage systems in a synthetical and quantitative manner, because they are very costly in the early stage of their development and commercialization. In this paper, the multiple functions of BES systems, which are operated at distribution systems, such as load levelling, effective utilization of power distribution systems and uninterruptible power supply at the emergency conditions are classified and analyzed. And then the quantitative evaluation methods of the multiple functions for BES systems are proposed using the mathematical modelling.

  • PDF

전기자동차 배터리의 에너지 저장장치로의 재사용에 관한 연구 (Research on the Re-Use of Electric Vehicle Battery for Energy Storage Systems)

  • 부하이남;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.345-346
    • /
    • 2016
  • The grid-connected energy storage systems, which could increase the reliability, efficiency, and cleanliness of the grid is presently restricted by the high cost of batteries. This problems could be solved by batteries retired from automotive services. These batteries can provide a low-cost system for energy storage and other applications such as residential applications and renewable energy integration. This paper gives an overview of technical requirements for the re-use of the electric vehicle batteries in energy storage systems.Firstly, the motivation of research is introduced. Secondly, the technologies needed for the re-use of the battery are introduced such asidentification of the battery characteristics, grading of the aged batteries, identification of the state-of-charge and state-of-health of the battery and suitable power electronic converter topologies. In addition the control strategy to maximize the battery lifespan and bypass the faulty batteries is presented and one-stop solution to implement the above mentioned technologies are also given.

  • PDF

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

PSCAD/EMTDC를 이용한 전지전력저장시스템의 수리모형에 관한 연구 (A Study on Mathematical Modeling of Battery Energy Storage Systems using PSCAD/EMIDC)

  • 김용상;김재언;노대석;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.1035-1037
    • /
    • 1997
  • This paper deals with the mathematical modeling of battery energy storage systems interconnected with the distribution system. This battery model takes account of self-discharge, battery storage capacity, internal resistance and overvoltage. The model components are decided by using an approximation technique and experimental results. This model can be used to evaluate battery performance of battery energy storage systems interconnected with distribution system.

  • PDF

에너지 저장 시스템용 납 축전지의 최근 실증 사례 (Recent Instantiation Case of Lead Acid Battery for Energy Storage Systems)

  • 안상용;정호영
    • 공업화학
    • /
    • 제24권4호
    • /
    • pp.344-349
    • /
    • 2013
  • 에너지 저장 시스템(energy storage system, ESS)은 발전설비에서 생산된 전력에너지를 저장하여 필요한 시점에 사용할 수 있도록 전기에너지를 화학적으로 저장하는 체계이다. 따라서 에너지 저장 시스템은 에너지 이용 효율향상, 전력공급 시스템의 안정화에 기여할 뿐 아니라, 이산화탄소의 감축 및 화석연료의 고갈문제에 직접 대응할 수 있게 한다. 이차전지인 납 축전지는 현재까지 가장 기술적으로 안정되어 있고, 경제적이며, 신뢰성이 있는 축전지 중 하나이다. 이에 본 연구에서는 납 축전지를 적용한 에너지 저장 시스템의 국내외 실증사례를 조사하여 사례별로 정리하여 관련연구에 참고하고자 한다.

장주기 대용량 전력저장장치의 부하이전에 대한 실계통 적용 경제성 평가 연구 (An Economic Assessment of Large-scale Battery Energy Storage Systems in the Energy-Shift Application to Korea Power System)

  • 박종배;박용기;노재형;장병훈;윤용범
    • 전기학회논문지
    • /
    • 제64권3호
    • /
    • pp.384-392
    • /
    • 2015
  • This paper presents an economic assessment of large-scale Li-ion battery energy storage systems applied to Korean power system. There are many applications of the battery energy storage systems (BESSs) and they can provide various benefits to power systems. We consider BESSs to the energy time-shift application to Korean power system and evaluate the benefits from the application of BESS in the social perspective. The mixed integer programming (MIP) algorithm is used to resolve the optimal operation schedule of the BESS. The social benefits can include the savings of the fuel cost from generating units, deferral effects of the generation capacity, delay of transmission and distribution infra construction, and incremental CO2 emission cost impacts, etc. The economic evaluation of the BESS is separately applied into Korean power systems of the Main-land and Jeju island to reflect the differences of the load and generation patterns.

전지이용 전력저장장치 기술개발 (A Study on the Development of Battery Energy Storage System)

  • 황용하;이근섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.905-907
    • /
    • 1993
  • Demand for electricity is increasing annually. Especially, the daytime demand grawth shows higher than any other time period. So the big difference between maximum and minimum electrical demand becomes another important problem to be solved. The Battery Energy Storage System is chosen as one of the solutions among the sevral methods. The purpose of utilization of Battery Energy Storage System is to improve the daily load factor. Also, Battery Energy Storage System may be used for the load levelling or the load shifting as well as the spinning reserve. Up to now, only the pumped hydro power plant system has been operated on the commercial basis, but this system has so many constraints such as site, environmental effects, construction period, ect. Being considered current electrical power situation the development of electric storage system is in need latly. Among the various electric storage systems, Battery Energy System is chosen with the top priority because it has sevral merits to cover such as the short construction period, the demand site installation, and the food environmental characteristics.

  • PDF

Development and Validation of an Energy Management System for an Electric Vehicle with a split Battery Storage System

  • Becker, Jan;Schaeper, Christoph;Rothgang, Susanne;Sauer, Dirk Uwe
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.920-929
    • /
    • 2013
  • Within the project 'e performance' supported by the German Ministry of Education and Research (BMBF) an electric vehicle, powered by two lithium-ion battery packs of different capacity and voltage has been developed. The required Energy Management System (EMS) in this system controls the current flows of both packs independently by means of two individual dc-dc converters. It acts as an intermediary between energy storage (battery management systems-BMS) and the drivetrain controller on the vehicle control unit (VCU) as well as the on-board charger. This paper describes the most important tasks of the EMS and its interfaces to the BMS and the VCU. To validate the algorithms before integrating them into the vehicle prototype, a detailed Matlab / Simulink-model was created in the project. Test procedures and results from the simulation as well as experiences and comparisons from the real car are presented at the end.