• 제목/요약/키워드: Battery case

검색결과 386건 처리시간 0.026초

충돌해석을 이용한 전기자동차 복합소재 프레임 배터리 케이스에 관한 연구 (A Study on Electric Vehicle Composite Material Frame Battery Case Using Collision Analysis)

  • 이영진;이상찬
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.15-21
    • /
    • 2022
  • Collision analysis involving a vehicle frame that includes a battery and a battery case was performed using a carbon fiber composite material (CFRP) and a glass fiber-reinforced plastic (GFRP), which are lightweight materials. Three types of collisions were analyzed: frontal collisions, partial frontal collisions, and side collisions. The maximum stress and deformation levels were measured for each case. To evaluate the stability of ignition and explosion potential of the battery, the maximum stress of the frame was measured before measuring the direct stress to confirm whether the collision energy was sufficiently absorbed. The deformation level of the battery case was measured to confirm whether the battery case affects the battery directly.

충격압출 공정에서 초기 슬러그 디자인이 사각 배터리 케이스의 이어링에 미치는 영향 분석 (Effects of Initial Slug Design on the Earring of a Rectangular Battery Case During Impact Extrusion)

  • 임재혁;최석우;정완진;신정학;이종섭
    • 소성∙가공
    • /
    • 제24권6호
    • /
    • pp.425-430
    • /
    • 2015
  • In the current paper, the effects of initial slug design on the earring of an Al rectangular battery case manufactured by impact extrusion were studied. During impact extrusion, non-uniform metal flow between the long and the short sides of the battery case leads to earring, which is subsequently trimmed. Process parameters such as friction, aspect ratio of the battery case, the die shape and the forming temperature tend to induce earring because they cause greater non-uniform metal flow. Large aspect ratio of the battery case and high friction between slug and die can greatly affect the earring of a rectangular battery case. To make a rectangular battery case without earring, it is necessary to control metal flow uniformly during impact extrusion. One of the ways to reduce the earring is to control the metal flow of slug at the initial upsetting stage. To analyze the effects of the initial slug design on earring, FE analysis was conducted using DEFORM 3D. Two types of initial slug designs were evaluated where volume was removed along either the width or thickness directions. The results show that the initial slug design can be effective in adjusting the uniformity of metal flow.

단추형 수은전지에 의한 식도이물 1례 (A Case of Esophageal Foreign Body by Mercury Button Battery)

  • 이진춘;김창수;박형진;노환중
    • 대한기관식도과학회지
    • /
    • 제5권1호
    • /
    • pp.73-77
    • /
    • 1999
  • The risk of foreign body by small button-disc battery in children has been increasing because the batteries are widely used in electronic device and plaything and easily contact with children. Foreign body of mercury type button-disc battery, when lodged in the esophagus, leak a caustic solution which causes a rapid necrosis of esophageal mucosa. So it should be removed immediately when the radiologic diagnosis is made. We experienced a case of esophageal foreign body by mercuric disc battery in a 14-month-old male. This case will be discussed with literature review.

  • PDF

에너지 저장 시스템용 납 축전지의 최근 실증 사례 (Recent Instantiation Case of Lead Acid Battery for Energy Storage Systems)

  • 안상용;정호영
    • 공업화학
    • /
    • 제24권4호
    • /
    • pp.344-349
    • /
    • 2013
  • 에너지 저장 시스템(energy storage system, ESS)은 발전설비에서 생산된 전력에너지를 저장하여 필요한 시점에 사용할 수 있도록 전기에너지를 화학적으로 저장하는 체계이다. 따라서 에너지 저장 시스템은 에너지 이용 효율향상, 전력공급 시스템의 안정화에 기여할 뿐 아니라, 이산화탄소의 감축 및 화석연료의 고갈문제에 직접 대응할 수 있게 한다. 이차전지인 납 축전지는 현재까지 가장 기술적으로 안정되어 있고, 경제적이며, 신뢰성이 있는 축전지 중 하나이다. 이에 본 연구에서는 납 축전지를 적용한 에너지 저장 시스템의 국내외 실증사례를 조사하여 사례별로 정리하여 관련연구에 참고하고자 한다.

휴대폰용 초정밀 사각 밧데리 케이스의 ???K드로잉 공정설계 (Process Design for Deep Drawing of High Precision Rectangular Battery Case used in Cellular Phone)

  • 김홍주;구태완;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 2000
  • Today deep drawing and ironing are the major process in manufacturing of battery case used in cellular phone from aluminum. The same technology is utilized in manufacturing of steel or aluminum cans for components of medical instrument, portable PC, walkman and so on. Most of these processes require multi-stage ironing following the deep drawing and redrawing processes. The practical aspects of this technology are well known and gained through extensive experiment and production know-how. However, the fundamental aspects of theses processes are relatively less known. Thus, it is expected that process simulations using FEM techniques would provide additional detailed information that could be utilized to improve the process condition. This paper illustrates the application of process modeling to deep drawing and redrawing operations for High Precision Rectangular Battery Case. A commercially avaliable finite element code LS-DYNA3D was used to simulate deep drawing and redrawing operations.

  • PDF

2차 전지의 방전에 의한 수소-공기 혼합가스의 점화에 관한 연구 (A Study on the Ignition of Hydrogen-Air Mixture Gas by Spark of Rechargeable Battery)

  • 이춘하;권병덕;오종용
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.32-39
    • /
    • 2004
  • This papers describes on the experimental consideration for the intrinsically-safe explosion-proof capability of rechargeable battery's body about main item rechargeable battery and cellular phone battery which is selling in domestic that IEC(International Electrotechnical Commission) recommend the measurement of ignition limit by short circuit of rechargeable battery and temperature increase test to use a explosion grade Group IIC type of explosion-proof type apparatus test an object of hydrogen gas. Because of that there are many different results for existence or nonexistence for ignition by different company and different types. It is concluded that the maximum of self temperature increasing by spark circuit of rechargeable battery is $180^{\circ}C$ in case of Nickel-Hydrogen and $110^{\circ}C$ in case of Nickel-Cadmium. The reaction of cellular battery for external temperature have following processes. It is confirmed that the temperature of reaction is rise slantly as the ambient temperature rising, then exterior shape of one is swell up and change when the temperature of ambient reach to about $130\~140^{\circ}C$, and when reach to about $160^{\circ}C$ the battery is blown up. Therefore, it is considered that have to be in considering selection of rechargeable battery using in itself due to different ignition limits of various rechargeable battery when the portable electric containing rechargeable battery are designed, produced and used, the characteristics and the proper safety factors of devices.

동일 형태의 NCM/LFP 배터리의 열폭주 현상에 대한 수치해석적 비교 연구 (Numerical Comparative Study on the Thermal Runaway of NCM/LFP Batteries of the Same Geometry)

  • 강명보;김우영;김남진
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, the thermal runaway of NCM and LFP batteries were compared and analyzed through numerical analysis under various conditions. Comparing the thermal runaway of the NCM622 (18650) battery cell and the LFP (18650) battery cell through oven test simulation, the LFP battery did not show thermal runaway, whereas the NCM622 battery temperature increased to 710℃ in 12 minutes. To observe the thermal runaway and propagation of the prismatic LFP battery cell, the internal temperature was set at 200℃ and the oven test simulation was conducted. It was found that thermal runaway occurred at 391℃ after 47 minutes. As a result of observing thermal runaway propagation by placing five NCM622 and LFP battery cells, the thermal runaway propagation was clearly observed in the case of the NCM622 battery, but in the case of the LFP battery, thermal runaway was not observed after the first cell. From the third battery cell, it was confirmed that the temperature change was very insignificant, and through this, it is considered that the LFP battery is relatively safe compared to the NCM battery in terms of the thermal runaway propagation of the battery.

CAE 해석을 이용한 배터리 케이스 사출성형에 관한 연구 (A Study on the Battery Case Injection Molding by CAE Analysis)

  • 이영욱
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.55-61
    • /
    • 2011
  • 축전지 용기는 폴리프로필렌으로 사출되며, 결정성 고분자 수지로 변형이 많이 일어나는 특성이 있다. 따라서 본 연구에서는 축전지 용기의 사출시 사용되는 Gate를 개선하여 금형의 공정을 단순화시킴으로써 생산비용의 절감과 성형품의 품질개선에 중점을 두고 CAE 해석을 실시하였다. 그 결과 성형과 제품에서 발생될 수 있는 유동의 불균형과 변형 등을 예측하여 제품의 불량률 감소로 신뢰성 향상에 기여할 것이다.

간략화된 배터리 모델이 적용된 IUIa 충전 방식의 에너지 저장장치의 PSCAD/EMTDC 시뮬레이션 모델에 관한 연구 (A Study on the PSCAD/EMTDC Simulation Model of Battery Energy Storage with Simplified Battery Model and IUIa Charging Method)

  • 김성현;이계병;홍준희;손광명
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.84-90
    • /
    • 2010
  • In order to level electric power of the photovoltaic and wind-turbine system and ensure fast response of the fuel-cell and micro-turbine, the energy storage is required in the microgrid system. In this paper, a simplified simulation model of the battery energy storage for charging method with IUIa is developed using PSCAD/EMTDC. The model consists of e.m.f.(electromotive force), internal resistor and overvoltage capacitor. A method for deciding parameters of the model on a case-by-case basis is proposed. The developed model can be used in the simulation of a complicated system such as a microgrid system.

납축전지 건전상태 진단을 위한 기준 임피던스/컨덕턴스 설정에 관한 연구 (A Study on the Establishment of Impedance/Conductance Guide Line for Diagnosis of Lead-Acid Battery's State of Health(SOH))

  • 김종민;방선배;송길목
    • 전기학회논문지P
    • /
    • 제58권2호
    • /
    • pp.214-220
    • /
    • 2009
  • Battery is one of the emergency power and its reliability is a very important to keep up the minimum of building capabilities in case of interruption of electric power. This paper, a comparison was made between three different types of instrument on 30 valve regulated lead acid(VRLA) TYPE 12[V]/100[AH] batteries, and then their indicated measured values(impedance/conductance) were compared with the measured capacity of the battery. As a result, Measured value of instrument is strongly related to battery's capacity in the same group battery and Impedance/Conductance guide line for diagnosis of lead-acid battery's state of health(SOH) is a different from each battery guoup.