• 제목/요약/키워드: Battery balancing

검색결과 127건 처리시간 0.025초

패시브 셀 밸런싱과 액티브 셀 밸런싱을 이용한 배터리 에너지 비교분석 (Comparative Analysis of Battery Energy Using Passive Cell Balancing and Active Cell Balancing)

  • 안지수;유현우;이병희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.387-388
    • /
    • 2020
  • 본 논문은 패시브 셀 밸런싱과 액티브 셀 밸런싱의 에너지 손실 비교에 관한 연구내용이다. 패시브 셀 밸런싱은 저항을 이용하여 과충전된 셀의 에너지를 소모하는 방식이며 액티브 셀 밸런싱은 SSC(Single Switched Capacitor) 구조를 이용하여 높은 에너지 셀의 에너지를 낮은 에너지 상태의 셀로 전달하는 방식이다. 높은 셀과 낮은 셀의 SOC(State Of Charge)의 차이가 5% (0.085 V)일 때 ∆SOC = 3% (∆V = 0.051 V)로 줄이기 위해 패시브 셀 밸런싱과 액티브 셀 밸런싱을 하여 두 셀 밸런싱의 에너지 손실 차이를 시뮬레이션과 실험을 통하여 비교한다.

  • PDF

Development of Super-capacitor Battery Charger System based on Photovoltaic Module for Agricultural Electric Carriers

  • Kang, Eonuck;Pratama, Pandu Sandi;Byun, Jaeyoung;Supeno, Destiani;Chung, Sungwon;Choi, Wonsik
    • Journal of Biosystems Engineering
    • /
    • 제43권2호
    • /
    • pp.94-102
    • /
    • 2018
  • Purpose: In this study, a maintenance free super-capacitor battery charging system based on the photovoltaic module, to be used in agricultural electric carriers, was developed and its charging characteristics were studied in detail. Methods: At first, the electric carrier system configuration is introduced and the electric control components are presented. The super-capacitor batteries and photovoltaic module used in the experiment are specified. Next, the developed charging system consisting of a constant current / constant voltage Buck converter as the charging device and a super-capacitor cell as a balancing device are initiated. The proposed circuit design, a developed PCB layout of each device and a proportional control to check the current and voltage during the charging process are outlined. An experiment was carried out using a developed prototype to clarify the effectiveness of the proposed system. A power analyzer was used to measure the current and voltage during charging to evaluate the efficiency of the energy storage device. Finally, the conclusions of this research are presented. Results: The experimental results show that the proposed system successfully controls the charging current and balances the battery voltage. The maximum voltage of the super-capacitor battery obtained by using the proposed battery charger is 16.2 V, and the maximum charging current is 20 A. It was found that the charging time was less than an hour through the duty ratio of 95% or more. Conclusions: The developed battery charging system was successfully implemented on the agricultural electric carriers.

Five-Level PWM Inverter Using Series and Parallel Alternative Connection of Batteries

  • Park, Jin-Soo;Kang, Feel-soon
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.701-710
    • /
    • 2017
  • This paper presents a five-level PWM inverter using series and parallel connection of voltage sources. The alternative connection is done by an auxiliary circuit consisted of a switch, three diodes, and two batteries. The auxiliary circuit is located between input dc voltage source and H-bridge cell. Thanks to the auxiliary circuit, the proposed inverter synthesizes five-level output voltage in an effective way. Topologically both batteries are charged and discharged in the same rate, so it does not need to apply battery voltage balancing control method. Theoretical analysis of the proposed inverter is verified by computer-aided simulation and experiment based on a prototype of 1kW.

Battery Energy Storage System Based Controller for a Wind Turbine Driven Isolated Asynchronous Generator

  • Singh, Bhim;Kasal, Gaurav Kumar
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.81-90
    • /
    • 2008
  • This paper presents an investigation of a voltage and frequency controller for an isolated asynchronous generator (IAG) driven. by a wind turbine and supplying 3-phase 4-wire loads to the isolated areas where a grid is not accessible. The control strategy is based on the indirect current control of the VSC (voltage source converter) using the frequency PI controller. The proposed controller consists of three single-phase IGBT (Insulated Gate Bipolar Junction Transistor) based VSC, which are connected to each phase of the IAG through three single phase transformers and a battery at their DC link. The controller has the capability of controlling reactive and active powers to regulate the magnitude and frequency of the generated voltage, harmonic elimination, load balancing and neutral current compensation. The proposed isolated system is modeled and simulated in MATLAB using Simulink and PSB (Power System Block-set) toolboxes to verify the performance of the controller.

이동형 기기를 위한 고출력 리튬 배터리 관리시스템 개발 (Development of Management System of High Power Li Battery Pack for Mobile Devices)

  • 남종하;유성모
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.577-579
    • /
    • 2008
  • 현재 우리사회는 친환경을 요구하는 시대로 접어들었다 세계적인 추세도 같은 방향으로 흐르고 있으며, 이미 미국, 영국, 프랑스, 이태리, 일본 등의 선진국에서는 자연 친화적, 경제적 실리 추구 및 편리성을 추구하면서 청정 에너지를 사용하는 "미래형 이동수단"에 큰 관심을 갖고 우리보다 한발 앞서 나가고 있다. 이중 전기자전거는 배터리를 통해 무공해, 무소음이라는 장점을 가지고 있으며, 유지관리비가 거의 들지 않고 교통체증을 완화시켜주며, 주차에 신경쓰지 않아도 되어 교통수단에 혁신을 가져다 줄 것이라 생각된다. 본 논문에서는 소형이동 수단인 전기자전거에 채용되는 고출력 리튬이온 배터리팩의 관리시스템을 개발하였으며, 기존의 MCU를 채용하는 제품에서의 문제점이었던 소비전류는 크게 저감하고 셀 밸런싱(Cell Balancing), 온도보호(OTP, Over Temperature Protection) 등의 추가기능은 충실히 수행할 수 있으면서도 저가의 전기자전거용 배터리관리시스템(BMS, Battery Management System)을 개발하였다.

  • PDF

리튬이온 배터리의 다중밸런싱 배터리팩 및 관리시스템 (Pack and Battery Management System for Multiple Balancing of Li-ion Battery)

  • 남종하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 추계학술대회 논문집
    • /
    • pp.81-82
    • /
    • 2016
  • 최근 퍼스널 모빌리티 분야에 적용되는 배터리는 대부분 리튬계열 배터리가 차지하고 있다. 각광받는 이유로는 작은 부피, 무게에 비해 큰 용량을 가지는 장점이 있고 셀당 전압의 경우에도 기존 니켈수소 및 카드뮴 등과 같은 수계전해액의 전지에 비해 3배 정도 높다는 장점을 가진다. 이러한 리튬이온배터리를 제품에 적용하기 위해서는 직병렬 구조의 팩 단위로 구성하여야 하며, 단일 셀이 아닌 다수의 셀 조합이기 때문에 충방전을 진행하는 과정에서 직렬구성 셀의 특성이 달리지게 되어 최종적으로는 전압의 차로 검출되게 된다. 이러한 전압의 차는 배터리의 용량을 저감시키고 특정 셀에 스트레스를 가중시켜 셀의 수명을 단축시키는 요인으로 작용한다.

  • PDF

OBC 전원장치의 배터리 셀 밸런싱 충전 기법 (Battery cell-balancing method for on board charger of Electric vehicle)

  • 김준모;엄태호;이정;신민호;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 추계학술대회 논문집
    • /
    • pp.141-142
    • /
    • 2016
  • 본 논문에서는 OBC 전원장치를 이용하여 전기 자동차의 배터리를 충전함에 있어 배터리의 셀 밸런싱을 고려한 충전 기법에 대하여 기술한다. 기존의 OBC 전원장치의 경우 배터리의 온도를 무시한 충전기법이 사용되며, 온도특성에 따라 배터리 수명이 달라지는 문제점을 발생시킨다. 따라서 배터리의 셀 밸런싱을 통해 배터리의 온도를 일정하게 유지하여 배터리 수명 연장시킨다.

  • PDF

Low-Voltage-Stress AC-Linked Charge Equalizing System for Series-Connected VRLA Battery Strings

  • Karnjanapiboon, Charnyut;Jirasereeamornkul, Kamon;Monyakul, Veerapol
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.186-196
    • /
    • 2013
  • This paper presents a low voltage-stress AC-linked charge equalizing system for balancing the energy in a serially connected, valve-regulated lead acid battery string using a modular converter that consists of multiple transformers coupled together. Each converter was coupled through an AC-linked bus to increase the overall energy transfer efficiency of the system and to eliminate the problem of the unbalanced charging of batteries. Previous solutions are based on centralized and modularized topologies. A centralized topology requires a redesign of the hardware and related components. It also faces a high voltage stress when the number of batteries is expanded. Modularized solutions use low-voltage-stress, double-stage, DC-linked topologies which leads to poor energy transfer efficiency. The proposed solution uses a low-voltage stress, AC-linked, modularized topology that makes adding more batteries easier. It also has a better energy transfer efficiency. To ensure that the charge equalization system operates smoothly and safely charges batteries, a small intelligent microcontroller was used in the control section. The efficiency of this charge equalization system is 85%, which is 21% better than other low-voltage-stress DC-linked charging techniques. The validity of this approach was confirmed by experimental results.

Design of a Charge Equalizer Based on Battery Modularization

  • Park, Hong-Sun;Kim, Chol-Ho;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.413-415
    • /
    • 2008
  • The charge equalizer design for a series connected battery string is very challenging because it needs to satisfy many requirements such as implementation possibility, equalization speed, equalization efficiency, controller complexity, size and cost issues, voltage and current stress, and so on. Numerous algorithms and circuits were developed to meet the above demands and some interesting results have been obtained through them. However, for a large number of cells, for example, eighty or more batteries, the previous approaches might cause problems. Such problems include long equalization time, high controller complexity, bulky size, high implementation cost, and high voltage and current stress. To overcome these circumstances, this paper proposes a charge equalizer design method based on a battery modularization technique. In this method, the number of cells that we consider in an equalizer design procedure can be effectively reduces; thus, designing a charge equalizer becomes much easier. Furthermore, by applying the previously verified charge equalizers to the intramodule and the outer-module, we can obtain easy design of a charge equalizer and good charge balancing performance. Several examples and experimental results are presented to demonstrate the usefulness of the charge equalizer design method.

  • PDF

The Initial Irreversible Capacity of the First Doping/Undoping of Lithium into Carbon

  • Doh, Chil-Hoon;Kim, Hyun-Soo;Moon, Seong-In
    • Carbon letters
    • /
    • 제1권3_4호
    • /
    • pp.148-153
    • /
    • 2001
  • The initial irreversible capacity, $Q_i$, is one of the parameters to express the material balancing of the cathode to anode. We introduced new terms, which are the initial intercalation Ah efficiency (IIE) and the initial irreversible specific capacity at the surface ($Q_{is}$), to express precisely the irreversibility of an electrode/electrolyte system. Two terms depended on kinds of active-materials and compositions of the electrode, but did not change with charging state. MPCF had the highest value of IIE and the lowest value of $Q_{is}$ in 1M $LiPE_6$/EC + DEC (1 : 1 volume ratio) electrolyte. IIE value of $LiCoO_2$ electrode was 97-98%, although the preparation condition of the material and the electrolyte were different. $Q_{is}$ value of $LiCoO_2$ was 0~1 mAh/g. MPCF-$LiCoO_2$ cell system had the lowest of the latent capacity. $Q_{is}$ value increased slightly by adding conductive material. IIE and $Q_{is}$ value varied with the electrolyte. By introducing PC to EC+DEC mixed solvent, IIE values were retained, but $Q_{is}$ increased. In case of addition of MP, IIE value increased and $Q_{is}$ value also increased a little.

  • PDF