• 제목/요약/키워드: Battery Power Control

검색결과 775건 처리시간 0.027초

양방향 전력수수가 가능한 이동식 전원장치의 개발 (Development of a portable power supply employing bidirectional energy flows)

  • 강필순;이정한;박성준;김철우
    • 전력전자학회논문지
    • /
    • 제7권4호
    • /
    • pp.339-345
    • /
    • 2002
  • 본 논문에서는 입력 전압 DC 24 [V]로 출력 전압 AC 220 [V] 정현파 출력을 낼 수 있는 인버터 기능과 충전 전압 및 충전 전류를 조정할 수 있는 DC 24 [V]용 자동 충전기 기능을 동시에 가지는 전원 장치의 시작품을 제작하고 실험을 통해서 타당성을 검증하였다. 본 논문에서 제안하는 전원장치는 두 기능을 동시에 가지면서도 전력 수수의 라인을 하나의 라인으로 회로 구성을 실현하여 스위치 소자 및 고주파 트랜스를 인버터 동작이나 충전기 동작 시에 겸용으로 사용함으로서 인버터나 충전기 각각의 제품을 구성하는데 사용된 제품 구성품에 비하여 매우 경제적이며, 저가의 마이크로 프로세스 (PIC16C74)를 사용하여 스위칭 동작 및 시?스 회로의 동작을 제어함으로서 전 체적인 제품의 구성을 간략화 하였다.

배터리로 구동되는 자기부상시스템의 부상제어회로 설계 (Levitation Control Circuit Design for a Magnetic Levitation System Supplied with a Battery)

  • 남윤호;박승찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.27-29
    • /
    • 2004
  • In this paper, a levitation control circuit for a magnetic levitation system supplied with a battery is designed. The control circuit consists of DSP, 4-quadrant chopper, and gap sensor as feedback sensors. Moreover the DSP includes PWM generator, A/D converter, etc. The feedback signals from gap sensors go into A/D converter of DSP to compare with reference. As a result, The design procedures of the levitation control circuit and battery power distribution system are described and basic experiment results are shown.

  • PDF

CC-CV충전제어가 가능한 IPMSM 토크제어기법 (IPMSM Torque Control Method available CC-CV Charge Control)

  • 김준찬;원일권;추경민;홍성우;김우재;김도윤;김영렬;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.407-408
    • /
    • 2017
  • In regenerative mode of an IPMSM control system without a bi-directional DC-DC converter, the 3-phase PWM inverter charges the battery. At this time, the regenerative torque reference for braking must output the proper torque reference to charge the battery. This paper proposed a regeneration control method that controls the voltage and current of the battery through CC-CV control at the regenerative braking torque corresponding to the driver's brake control.

  • PDF

전기자동차 구동시스템 설계 (Design of Drive System for Electric Vehicle)

  • 오진석
    • 한국정보통신학회논문지
    • /
    • 제3권2호
    • /
    • pp.465-470
    • /
    • 1999
  • This paper presents a design method of driving system for EV(Electric Vehicle). EV driving system consist of batteries, battery interface system and inverter. The power control circuit of the driving system is simple, since only one PWM(Pulse Width Modulation) inverter is used. These test spectrums and waveforms can be used to determine the filter component ratings as well as to compute the harmonics injected into the source. The hybrid control strategy which can reduced harmonic components. The analysis results indicate that the required capacity of the condenser can be reduced with LC filter. In this paper, the design and implementation of the proposed systems are described and some experimental results are given to show the performance of this driving system. The control strategy of the system to available inverter's power and motor's power and torque is discussed.

  • PDF

주파수추종 운전 적용을 위한 BESS의 운용 방법 및 효과 (Operation of Battery Energy Storage System for Governor Free and its Effect)

  • 조성민;장병훈;윤용범;전웅재;김철우
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.16-22
    • /
    • 2015
  • As the development of Battery Energy Storage System(BESS) and the increasing of intermittent energy sources like wind power and photovoltaic, the application of BESS in load frequency control is considered as an effective method. To evaluate the effectiveness of BESS application in frequency control, we defined a governor free model of BESS to conduct dynamic simulation. Using the BESS dynamic model, we implemented the power system dynamic model including steam, gas and hydro turbine generators. In this paper we study the control performance of BESS in primary frequency control. The effect of BESS speed regulation rate and response time on governor free operation is investigated. In addition, we compared BESS from steam turbine generator in view point of frequency regulation.

하이브리드 전기 추진 시스템의 전력 제어에 관한 연구 (A Study on Power contorl for Hybrid electric propulsion system)

  • 오진석;조관준;함연재;배수영;정성영
    • 한국항해항만학회지
    • /
    • 제32권10호
    • /
    • pp.765-770
    • /
    • 2008
  • 본 논문은 하이브리드 전기 추진 시스템의 전력 제어에 관한 연구를 수행하였다. 하이브리드 전기 추진 시스템은 기본적으로 발전기와 축전지 전원을 이용하여 선박을 추진하는 시스템이다. 하이브리드 추진 시스템은 공급되는 전력을 최소화하기 위한 제어 알고리즘으로 동작한다. 본 논문에서는 하이브리드 전기 추진 시스템의 효율을 증가시키기 위한 축전지 충전 알고리즘을 제안한다. 실험을 통하여 제어 알고리즘이 하이브리드 전기 추진 시스템에서 정상적으로 동작하는 것을 알 수 있었다.

배터리 가용성 극대화를 고려한 BESS의 AGC 주파수제어 추종운영방안 (Operating Method of BESS for Providing AGC Frequency Control Service Considering Its Availability Maximization)

  • 최우영;유가람;국경수
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1161-1168
    • /
    • 2016
  • Battery energy storage system(BESS) attract the attention of the power system operators with its fast response to a disturbance in spite of its limited energy capacity. This paper proposes the operating method of BESS for following the Automatic Generation Control(AGC) frequency control which is centrally distributed by a system operator. As BESS needs to just meet the control requirement from the system operator, it should be able to properly manage the state of charge(SOC) of BESS to be available to control signal. For doing these, the proposed method distributes the control requirement to available batteries in proportion to its SOC. In addition, unavailable batteries are controlled to recover the SOC to an appropriate range, and the recovering power is supplied by available batteries meeting the control requirement. Moreover, the proposed method manages the efficiency of power conversion system (PCS) by limiting the number of PCS to be assigned for the low control requirement. Finally, the case studies are carried out to verify the effectiveness of proposed strategy.

3상 인터리브드 양방향 DC-DC 컨버터의 전류리플을 저감하기 위한 새로운 제어기법 (New Control Method for the Current Ripple Reduction of 3-phase Interleaved Bidirectional DC-DC Converter)

  • 정재헌;김지현;노의철;김흥근;전태원
    • 전력전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.260-266
    • /
    • 2016
  • A new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter is proposed. The converter used in this study operates in discontinuous mode to minimize the switching losses. All the switches are turned on at ZVS and ZCS conditions, and turned off at ZVS condition. The charging and discharging power of the battery is controlled by varying the switching frequency while maintaining the discontinuous mode operation. A 3 kW 20 kHz power converter is designed and implemented. Simulation and experimental results show the validity of the proposed method. The proposed control method can be used to reduce the battery ripple current significantly.

가파도 마이크로그리드에서의 풍력발전 연계를 위한 2MVA급 배터리 에너지 저장시스템(BESS) 적용 및 실증 (The Application and Verification of the 2MVA Battery Energy Storage System(BESS) with Wind-turbine in Micro-grid of Gapado, Jeju)

  • 김승모;오승진;이종학;김태형;권병기;안재민;진경민;최창호
    • 전력전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.303-311
    • /
    • 2014
  • This paper shows the test result of 2MVA BESS(Battery Energy Storage System) with wind-turbine in micro-grid of the Gapado. To implement of micro-grid with BESS, characteristics of generator and customer load in grid are considered. Also, to operate of 2-parallel PCU(Power Conversion Unit) in BESS, the droop control is adopted with operating mode of grid independent. Performances of BESS with wind-turbine were verified by analysis of power quality such as voltage harmonics, ratio of voltage and frequency regulation, and by measurement of waveform such as output voltage and current.

Development of DC Controller for Battery Control for Elevator Car

  • Lee, Sang-Hyun;Kim, Sangbum
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.103-111
    • /
    • 2021
  • Among transport vehicles, Special Vehicles (SVs) are seriously exposed to energy and environmental problems. In particular, elevator cars used when moving objects in high-rise buildings increase the engine's rotational speed (radian per second: RPM). At this time, when the vehicle accelerates rapidly while idling, energy consumption increases explosively along with the engine speed, and a lot of soot is generated. The purpose of this paper is to develop a bi-directional DC-DC converter for control of vehicle power and secondary battery used in an elevated ladder vehicle (EC) used in the moving industry. As a result of this paper, the performance test of the converter was conducted. The charging/discharging state of the converter was simulated using DC power supply and DC electronic load, and a performance experiment was conducted to measure the input/output power of the converter through a power meter. Through this experimental result, it was confirmed that the efficiency was more than 92% in Buck mode and Boost mode at maximum 1.2kW output.