• 제목/요약/키워드: Battery Management System

검색결과 417건 처리시간 0.029초

Lifetime Management Method of Lithium-ion battery for Energy Storage System

  • Won, Il-Kuen;Choo, Kyoung-Min;Lee, Soon-Ryung;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1173-1184
    • /
    • 2018
  • The lifetime of a lithium-ion battery is one of the most important issues of the energy storage system (ESS) because of its stable and reliable operation. In this paper, the lifetime management method of the lithium-ion battery for energy storage system is proposed. The lifetime of the lithium-ion battery varies, depending on the power usage, operation condition, and, especially the selected depth of discharge (DOD). The proposed method estimates the total lifetime of the lithium-ion battery by calculating the total transferable energy corresponding to the selected DOD and achievable cycle (ACC) data. It is also demonstrated that the battery model can obtain state of charge (SOC) corresponding to the ESS operation simultaneously. The simulation results are presented performing the proposed lifetime management method. Also, the total revenue and entire lifetime prediction of a lithium-ion battery of ESS are presented considering the DOD, operation and various condition for the nations of USA and Korea using the proposed method.

자율이동체를 위한 2차 전지의 확장칼만필터에 기초한 SOC 추정 기법 (Secondary Battery SOC Estimation Technique for an Autonomous System Based on Extended Kalman Filter)

  • 전창완;이유미
    • 제어로봇시스템학회논문지
    • /
    • 제14권9호
    • /
    • pp.904-908
    • /
    • 2008
  • Every autonomous system like a robot needs a power source known as a battery. And proper management of the battery is very important for proper operation. To know State of Charge(SOC) of a battery is the very core of proper battery management. In this paper, the SOC estimation problem is tackled based on the well known Extended Kalman Filter(EKF). Combined the existing battery model is used and then EKF is employed to estimate the SOC. SOC table is constructed by extensive experiment under various conditions and used as a true SOC. To verify the estimation result, extensive experiment is performed with various loads. The comparison result shows the battery estimation problem can be well solved with the technique proposed in this paper. The result of this paper can be used to develop related autonomous system.

전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰 (A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola)

  • 최철영;최웅철
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.

하이브리드 철도차량 시스템의 전기-열 모델 기반 리튬이온 배터리 온도 추정 방안 (Electro-Thermal Model Based-Temperature Estimation Method of Lithium-Ion Battery for Fuel-Cell and Battery Hybrid Railroad Propulsion System)

  • 박성윤;김재영;김종훈;류준형;조인호
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.357-363
    • /
    • 2021
  • Eco-friendly hybrid railroad propulsion system with fuel-cell and battery was suggested to reduce carbon dioxide gas and replace retired diesel railroads. Lithium-ion battery with high energy/power density and long lifetime is selected as the energy source at the battery side due to its excellent performance. However, the performance of lithium-ion batteries was affected by temperature, current rate, and operating condition. Temperature is known to be the most influential factor in changing battery parameters. In addition, appropriate thermal management is required to ensure the safe and effective operation of lithium-ion battery. Electro-thermal coupled model with varying parameter depends on temperature, and state-of-charge (SOC) is suggested to estimate battery temperature. The electric-thermal coupled model contains diffusion current using parameter identification by adaptive control algorithm when considering thermal diffusion effect. An experiment under forced convection was conducted using cylindrical cell and 18 parallel-connected battery module to demonstrate the method.

연축전지와 리튬이온전지용 하이브리드 BMS 알고리즘 개발 (Development of Hybrid BMS(Battery Management System) Algorithm for Lead-acid and Lithium-ion battery)

  • 오승택;김병기;박재범;노대석
    • 한국산학기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.3391-3398
    • /
    • 2015
  • 현재 대부분의 도서지역에서는 태양광발전을 효율적으로 운용하기 위하여 대용량 연축전지가 많이 사용되고 있지만, 풍력발전의 도입, 축전지 교체로 인하여 리튬이온전지의 도입이 증가하고 있다. 따라서 본 논문에서는 기존에 많이 보급되어 사용되고 있는 연축전지와 리튬이온전지의 장점을 최대한 활용하기 위하여, 연축전지와 리튬이온전지용 하이브리드 BMS 알고리즘을 제시하였다. 즉, 각 전지의 충전상태(state of charge, SOC)를 평가하는 알고리즘과 각 전지의 도입비용과 운용비용에 따른 최적 구성비를 산출하는 하이브리드 운용 알고리즘을 제안하였다. 상기의 알고리즘을 이용하여 다양한 시뮬레이션을 수행한 결과, 기존의 충전상태 평가 방법보다 오차율이 개선되어 정확한 충전상태에 대한 결과가 산출되었고, 각 전지의 도입비용과 운용비용이 최소화되는 조건에서 최적구성비를 구하여, 본 논문에서 제안한 하이브리드 BMS 알고리즘의 유용성을 확인하였다.

Comparison Study on Power Output Characteristics of Power Management Methods for a Hybrid-electric UAV with Solar Cell/Fuel Cell/Battery

  • Lee, Bohwa;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.631-640
    • /
    • 2016
  • A dual-mode power management for a hybrid-electric UAV with a cruise power of 200W is proposed and empirically verified. The subject vehicle is a low-speed long-endurance UAV powered by a solar cell, a fuel cell, and a battery pack, which operate in the same voltage bounds. These power sources of different operational characteristics can be managed in two different methods: passive management and active management. This study proposes a new power management system named PMS2, which employs a bypass circuit to control the individual power sources. The PMS2 normally operates in active mode, and the bypass circuit converts the system into passive mode when necessary. The output characteristics of the hybrid system with the PMS2 are investigated under simulated failures in the power sources and the conversion of the power management methods. The investigation also provides quantitative comparisons of efficiencies of the system under the two distinct power management modes. In the case of the solar cell, the efficiency difference between the active and the passive management is shown to be 0.34% when the SOC of the battery is between 25-65%. However, if the SOC is out of this given range, i.e. when the SOC is at 90%, using active management displays an improved efficiency of 6.9%. In the case of the fuel cell, the efficiency of 55% is shown for both active and passive managements, indicating negligible differences.

다중 마이크로콘트롤러를 사용한 배터리 관리 시스템의 개발 (Development of Battery Management System using Multiple Microcontroller)

  • 최정원;장운근
    • 한국산업융합학회 논문집
    • /
    • 제21권6호
    • /
    • pp.329-335
    • /
    • 2018
  • In an electric vehicle and Energy Storage System(ESS), a large number of batteries are connected in series or parallel to obtain high voltage and current. The battery management system(BMS) is needed because battery has a characteristic that explode in overcharging and overcurrent situations due to the nature of the battery material and the battery life is dramatically reduced when the battery is overdischarged below the specified voltage. In this paper, we proposed a system that can manage a large amount of batteries through the communication of master-slave type with multiple microcontroller. We confirmed the stable operation of the proposed system through the balancing-charging and storage mode experiments.

전기 자동차 가상 플랫폼용 배터리 모델 개발 및 검증 (Development of a Battery Model for Electric Vehicle Virtual Platform)

  • 김선우;조종민;한재영;김성수;차한주;유상석
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.486-493
    • /
    • 2015
  • In this paper, a battery model for electric vehicle virtual platform was developed. A battery model consisted of a battery cell model and battery thermal management system. A battery cell model was developed based on Randles equivalent circuit model. Circuit parameters in the form of 3D map data was obtained by charge-discharge experiment of Li-Polymer battery in various temperature condition. The developed battery cell model was experimentally verified by comparing voltages. Thermal management system model was also developed using heat generator, heat transfer and convection model, and cooling fan. For verification of the developed battery model in vehicle level, the integrated battery model was applied in to EV(electric vehicle) virtual platform, and virtual driving simulation using UDDS velocity profile was conducted. The accuracy of the developed battery model has been verified by comparing the simulation results from EV platform with the experimental data.

퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어 (Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics)

  • 정귀성;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.

UPS용 납축전지를 위한 배터리관리시스템 (The Battery Management System for UPS Lead-Acid Battery)

  • 서철식;문종현;박재욱;김금수;김동희
    • 조명전기설비학회논문지
    • /
    • 제22권6호
    • /
    • pp.127-133
    • /
    • 2008
  • 본 논문에서는 무정전 전원시스템(UPS : Uninterruptible Power Supply)의 에너지 저장용으로 사용되는 납축전지를 최적의 상태로 유지, 관리하는 배터리관리시스템을 설계, 제작하고, 잔존용량을 추정하는 알고리즘을 제안한다. 제안된 배터리관리시스템은 배터리의 충 방전 전류를 제어하여 과방전 및 과충전으로부터 배터리를 보호하며, 충 방전 시 배터리 잔존용량(SOC)을 예측하여 배터리를 최적 상태로 유지하도록 하는 알고리즘이 적용된다. 또한 충 방전 시험기를 이용한 실험과 UPS에 장착한 후 성능 실험을 통해, 제작된 시스템의 성능 및 제안된 배터리 잔존용량 추정 알고리즘의 타당성을 입증한다.